• Photonics Research
  • Vol. 9, Issue 8, 1486 (2021)
Jaffar Kadum1、2、*, Ranjan Das1、3、*, Arijit Misra1, and Thomas Schneider1
Author Affiliations
  • 1THz-Photonics Group, Technische Universität Braunschweig, Schleinitzstraße 22, 38106 Braunschweig, Germany
  • 2e-mail: jaffar.kadum@ihf.tu-bs.de
  • 3e-mail: ranjan.das@ieee.org
  • show less
    DOI: 10.1364/PRJ.427691 Cite this Article Set citation alerts
    Jaffar Kadum, Ranjan Das, Arijit Misra, Thomas Schneider. Brillouin-scattering-induced transparency enabled reconfigurable sensing of RF signals[J]. Photonics Research, 2021, 9(8): 1486 Copy Citation Text show less
    References

    [1] C. R. Stevenson, G. Chouinard, Z. Lei, W. Hu, S. J. Shellhammer, W. Caldwell. IEEE 802.22: the first cognitive radio wireless regional area network standard. IEEE Commun. Mag., 47, 130-138(2009).

    [2] R. Das, T. Schneider. Integrated group delay units for real-time reconfigurable spectrum sensing of mm-wave signals. Opt. Lett., 45, 4778-4781(2020).

    [3] LAN/Man Committee. Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands, 1-680(2011).

    [4] X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, J. Yao. Photonics for microwave measurements. Laser Photonics Rev., 10, 711-734(2016).

    [5] M. Burla, X. Wang, M. Li, L. Chrostowski, J. Azanã. Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip. Nat. Commun., 7, 13004(2016).

    [6] Q. Zhang, D. L. Sounas, C. Caloz. Synthesis of cross-coupledreduced-order dispersive delay structures (DDSS) with arbitrary group delay and controlled magnitude. IEEE Trans. Microwave Theory Tech., 61, 1043-1052(2013).

    [7] S. Gupta, Q. Zhang, L. Zou, L. J. Jiang, C. Caloz. Generalized coupled-line all-pass phasers. IEEE Trans. Microwave Theory Tech., 63, 1007-1018(2015).

    [8] M. Z. Chen, Q. Cheng, F. Xia, A. K. Rashid, J. Y. Dai, C. Zhang, Q. Zhang, T. J. Cui. Metasurface‐based spatial phasers for analogue signal processing. Adv. Opt. Mater., 8, 2000128(2020).

    [9] A. Choudhary, B. Morrison, I. Aryanfar, S. Shahnia, M. Pagani, Y. Liu, K. Vu, S. Madden, D. Marpaung, B. J. Eggleton. With giant on-chip Brillouin gain. J. Lightwave Technol., 35, 846-854(2017).

    [10] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).

    [11] T. Jannson. Real-time Fourier transformation in dispersive optical fibers. Opt. Lett., 8, 232-234(1983).

    [12] J. Azaña, M. A. Muriel. Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings. IEEE J. Quantum Electron., 36, 517-525(2000).

    [13] L. Cohen. Time-frequency distributions: a review. Proc. IEEE, 77, 941-981(1989).

    [14] S. R. Konatham, R. Maram, L. R. Cortés, J. H. Chang, S. LaRusch, S. Rochelle, H. G. de Chatellus, J. Azaña. Real-time gap-free dynamic waveform spectral analysis with nanosecond resolutions through analog signal processing. Nat. Commun., 11, 3309(2020).

    [15] S. R. Konatham, H. G. De Chatellus, J. Azana. Photonics-based real-time spectrogram analysis of broadband waveforms. J. Lightwave Technol., 38, 5356-5367(2020).

    [16] R. Boyd. Nonlinear Optics(2008).

    [17] Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. Boyd, A. E. Willner. Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber. J. Opt. Soc. Am. B, 22, 2378-2384(2005).

    [18] S. Preussler, T. Schneider. Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing. Opt. Eng., 55, 031110(2015).

    [19] S. Preussler, A. Wiatrek, K. Jamshidi, T. Schneider. Brillouin scattering gain bandwidth reduction down to 3.4 MHz. Opt. Express, 19, 8565-8570(2011).

    [20] S. Preussler, T. Schneider. Bandwidth reduction in a multistage Brillouin system. Opt. Lett., 37, 4122-4124(2012).

    [21] A. Wiatrek, S. Preussler, K. Jamshidi, T. Schneider. Frequency domain aperture for the gain bandwidth reduction of stimulated Brillouin scattering. Opt. Lett., 37, 930-932(2012).

    [22] T. Schneider, M. Junker, K. Lauterbach. Potential ultra wide slow-light bandwidth enhancement. Opt. Express, 14, 11082-11087(2006).

    [23] K. Y. Song, M. G. Herráez, L. Thévenaz. Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Opt. Express, 13, 82-88(2005).

    [24] M. G. Herráez, K. Y. Song, L. Thévenaz. Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering. Appl. Phys. Lett., 87, 081113(2005).

    [25] T. Schneider, R. Henker, K. Lauterbach, M. Junker. Comparison of delay enhancement mechanisms for SBS-based slow light systems. Opt. Express, 15, 9606-9613(2007).

    [26] T. Schneider. Time delay limits of stimulated-Brillouin-scattering-based slow light systems. Opt. Lett., 33, 1398-1400(2008).

    [27] T. Schneider, R. Henker, K. Lauterbach, M. Junker. Distortion reduction in slow light systems based on stimulated Brillouin scattering. Opt. Express, 16, 8280-8285(2008).

    [28] A. Wiatrek, R. Henker, S. Preussler, T. Schneider. Pulse broadening cancellation in cascaded slow-light delays. Opt. Express., 17, 7586-7591(2009).

    [29] T. Schneider, A. Wiatreck, R. Henker. Zero-broadening and pulse compression slow light in an optical fiber at high pulse delays. Opt. Express, 16, 15617-15622(2008).

    [30] A. Minardo, R. Bernini, L. Zeni. Low distortion Brillouin slow light in optical fibers using AM modulation. Opt. Express, 14, 5866-5876(2006).

    [31] S. Chin, M. G. Herráez, L. Thévenaz. Zero-gain slow & fast light propagation in an optical fiber. Opt. Express, 14, 10684-10692(2006).

    [32] T. Schneider, M. Junker, K. Lauterbach. Time delay enhancement in stimulated-Brillouin-scattering-based slow-light systems. Opt. Lett., 32, 220-222(2007).

    [33] Y. Okawachi, J. E. Sharping, A. L. Gaeta, M. S. Bigelow, A. Schweinsberg, R. W. Boyd, Z. Zhu, D. J. Gauthier. Tunable all-optical delays via Brillouin slow light in an optical fiber. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, CMCC3(2005).

    [34] A. Choudhary, Y. Liu, D. Marpaung, B. J. Eggleton. On-chip Brillouin filtering of RF and optical signals. IEEE J. Sel. Top. Quantum Electron., 24, 7600211(2018).

    [35] R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, B. J. Eggleton. On-chip slow and fast light using stimulated Brillouin scattering. Opt. Lett., 37, 969-971(2012).

    [36] C. X. Wang, J. Bian, J. Sun, W. Zhang, M. Zhang. A survey of 5G channel measurements and models. Commun. Surveys Tuts., 20, 3142-3168(2018).

    [37] https://www.gsma.com/spectrum/wpcontent/uploads/2016/06/GSMA-5G-Spectrum-PPP.pdf. https://www.gsma.com/spectrum/wpcontent/uploads/2016/06/GSMA-5G-Spectrum-PPP.pdf

    Jaffar Kadum, Ranjan Das, Arijit Misra, Thomas Schneider. Brillouin-scattering-induced transparency enabled reconfigurable sensing of RF signals[J]. Photonics Research, 2021, 9(8): 1486
    Download Citation