• High Power Laser Science and Engineering
  • Vol. 10, Issue 1, 010000e7 (2022)
Tongyao Du1、2, Dajie Huang2, He Cheng2, Wei Fan2、3、*, Zhibo Xing2、3, Xuechun Li2、3, and Jianqiang Zhu2、3
Author Affiliations
  • 1Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei230026, China
  • 2National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai201800, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
  • show less
    DOI: 10.1017/hpl.2021.63 Cite this Article Set citation alerts
    Tongyao Du, Dajie Huang, He Cheng, Wei Fan, Zhibo Xing, Xuechun Li, Jianqiang Zhu. Compensation method for performance degradation of optically addressed spatial light modulator induced by CW laser[J]. High Power Laser Science and Engineering, 2022, 10(1): 010000e7 Copy Citation Text show less

    Abstract

    In this paper, we propose an effective method to compensate for the performance degradation of optically addressed spatial light modulators (OASLMs). The thermal deposition problem usually leads to the on-off ratio reduction of amplitude OASLM, so it is difficult to achieve better results in high-power laser systems. Through the analysis of the laser-induced temperature rise model and the liquid crystal layer voltage model, it is found that reducing the driving voltage of the liquid crystal light valve and increasing the driving current of the optical writing module can compensate for the decrease of on–off ratio caused by temperature rise. This is the result of effectively utilizing the photoconductive effect of Bi12SiO20 (BSO) crystal. The experimental results verify the feasibility of the proposed method and increase the laser withstand power of amplitude-only OASLM by about a factor of 2.5.
    $$\begin{align}\frac{\partial I}{\partial Z}=\alpha I\left(1-R\right),\end{align}$$ ((1))

    View in Article

    $$\begin{align}\rho C\frac{\partial T}{\partial t}-\frac{k}{r}\frac{\partial }{\partial r}\left(\frac{\partial T}{\partial r}\right)-k\frac{\partial^2T}{\partial {z}^2}=Q=\alpha I\left(1-R\right),\end{align}$$ ((2))

    View in Article

    $$\begin{align}{n}_{\mathrm{e}}(T)=A- BT+\frac{2}{3}{\left(\Delta n\right)}_0{\left(1-\frac{T}{T_{\mathrm{C}}}\right)}^{\beta },\end{align}$$ ((3))

    View in Article

    $$\begin{align}{n}_{\mathrm{o}}(T)=A- BT-\frac{1}{3}{\left(\Delta n\right)}_0{\left(1-\frac{T}{T_{\mathrm{C}}}\right)}^{\beta },\end{align}$$ ((4))

    View in Article

    $$\begin{align}\Delta n(T)={\left(\Delta n\right)}_0{\left(1-\frac{T}{T_{\mathrm{C}}}\right)}^{\beta }.\end{align}$$ ((5))

    View in Article

    $$\begin{align}I={I}_0\left(1-R\right){\sin}^2\kern-2pt\left(\kern-2pt\frac{\pi }{2}\sqrt{1\kern-1pt +\kern-1pt{\left(\kern-1pt\frac{2\Delta nd}{\lambda}\right)\kern-2pt}^2}\right)\kern-2pt\bigg/\kern-2pt\left(\kern-2pt1+{\left(\frac{2\Delta nd}{\lambda}\right)}^2\right),\end{align}$$ ((6))

    View in Article

    $$\begin{align}I={I}_0\left(1-R\right){\sin}^2\left(\frac{\pi }{2}\sqrt{N}\right)/N,\end{align}$$ ((7))

    View in Article

    $$\begin{align}N=1+{\left(\frac{2{\left(\Delta n\right)}_0{\left(1-T/{T}_{\mathrm{C}}\right)}^{\beta }d}{\lambda}\right)}^2.\end{align}$$ ((8))

    View in Article

    $$\begin{align}\Delta n&\approx {\Delta n}_0-\left(\frac{U_{\mathrm{LC}}-{U}_{\mathrm{th}}}{U_{\mathrm{th}}}\right), \nonumber\\ {\Delta n}_0&=\left(\frac{2\pi m{\left(1-T/{T}_{\mathrm{C}}\right)}^{\frac{\beta }{2}}-{U}_{\mathrm{LC}}}{\pi m{\left(1-T/{T}_{\mathrm{C}}\right)}^{\frac{\beta }{2}}}\right){\Delta n}_0,\end{align}$$ ((9))

    View in Article

    $$\begin{align}{U}_{\mathrm{th}}=\pi m{\left(1-\frac{T}{T_{\mathrm{C}}}\right)}^{\beta /2}.\end{align}$$ ((10))

    View in Article

    $$\begin{align}{U}_{\mathrm{LC}}={U}_{\mathrm{AC}}\frac{\frac{1}{R_0}+\frac{1}{R_{\phi }}+ j\omega {C}_{\mathrm{BSO}}+\frac{j\omega {C}_1}{1+ j\omega {R}_1{C}_1}}{\frac{1}{R_0}+\frac{1}{R_{\phi }}+ j\omega {C}_{\mathrm{BSO}}+\frac{j\omega {C}_1}{1+ j\omega {R}_1{C}_1}+\frac{1}{R_{\mathrm{LC}}}+ j\omega {C}_{\mathrm{LC}}},\end{align}$$ ((11))

    View in Article

    $$\begin{align}& {N}_{U_{\mathrm{LC}}}=1 \nonumber \\ &\quad +{\left(\frac{2d{\Delta n}_0}{\pi m\lambda}\left(2\pi m{\left(1-\frac{T}{T_{\mathrm{C}}}\right)}^{\beta } -{U}_{\mathrm{LC}}{\left(1-\frac{T}{T_{\mathrm{C}}}\right)}^{\beta /2}\right)\right)}^2.\end{align}$$ ((12))

    View in Article

    $$\begin{align}{T}_{\mathrm{SLM}}=\frac{I}{I_0}=\left(1-R\right){\sin}^2\left(\frac{\pi }{2}\sqrt{N_{U_{\mathrm{LC}}}}\right)/{N}_{U_{\mathrm{LC}}},\end{align}$$ ((13))

    View in Article

    Tongyao Du, Dajie Huang, He Cheng, Wei Fan, Zhibo Xing, Xuechun Li, Jianqiang Zhu. Compensation method for performance degradation of optically addressed spatial light modulator induced by CW laser[J]. High Power Laser Science and Engineering, 2022, 10(1): 010000e7
    Download Citation