• Chinese Optics Letters
  • Vol. 20, Issue 3, 031903 (2022)
Kejian Zhu1, Pengfei Sun1, Pengfei Xu1, Xingpeng Liu2, Tangyou Sun2, Haiou Li2, and Zhiping Zhou1、3、*
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
  • 2Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China
  • 3Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/COL202220.031903 Cite this Article Set citation alerts
    Kejian Zhu, Pengfei Sun, Pengfei Xu, Xingpeng Liu, Tangyou Sun, Haiou Li, Zhiping Zhou. Kerr effect in ultra-compact hybrid plasmonic metal-insulator-metal nano-focusing structure[J]. Chinese Optics Letters, 2022, 20(3): 031903 Copy Citation Text show less
    References

    [1] Z. Zhou, R. Chen, X. Li, T. Li. Development trends in silicon photonics for data centers. Opt. Fiber Technol., 44, 13(2018).

    [2] Z. Zhou, B. Yin, Q. Deng, X. Li, J. Cui. Lowering the energy consumption in silicon photonic devices and systems [Invited]. Photonics Res., 3, B28(2015).

    [3] Z. Zhou, B. Yin, J. Michel. On-chip light sources for silicon photonics. Light Sci. Appl., 4, e358(2015).

    [4] F. J. Diaz, G. Li, C. M. de Sterke, B. T. Kuhlmey, S. Palomba. Kerr effect in hybrid plasmonic waveguides. J. Opt. Soc. Am. B, 33, 957(2016).

    [5] J. Leuthold, C. Koos, W. Freude. Nonlinear silicon photonics. Nat. Photonics, 4, 535(2010).

    [6] D. Dai, J. E. Bowers. Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects. Nanophotonics, 3, 283(2014).

    [7] D. Dai, J. Bauters, J. E. Bowers. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light Sci. Appl., 1, e1(2012).

    [8] Q. Lin, O. J. Painter, G. P. Agrawal. Nonlinear optical phenomena in silicon waveguides: modeling and applications. Opt. Express, 15, 16604(2007).

    [9] Z. Zhou, Z. Tu, B. Yin, W. Tan, L. Yu, H. Yi, X. Wang. Development trends in silicon photonics. Chin. Opt. Lett., 11, 012501(2013).

    [10] Beyond the diffraction limit. Nat. Photonics, 3, 361(2009).

    [11] C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nat. Photonics, 3, 216(2009).

    [12] B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, I. Biaggio. A high-optical quality supramolecular assembly for third-order integrated nonlinear optics. Adv. Mater., 20, 4584(2008).

    [13] D. Dai, S. He. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt. Express, 17, 16646(2009).

    [14] R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics, 2, 496(2008).

    [15] Z. Zhou, B. Bai, L. Liu. Silicon on-chip PDM and WDM technologies via plasmonics and subwavelength grating. IEEE J. Sel. Top. Quantum Electron., 25, 4600413(2019).

    [16] K. Zhu, P. Xu, P. Sun, X. Liu, H. Li, Z. Zhou. An ultra-compact broadband TE-pass nanofocusing structure. Asia Communications and Photonics Conference/International Conference on Information Photonics and Optical Communications, M4A.151(2020).

    [17] K. Zhu, P. Xu, P. Sun, X. Liu, H. Li, Z. Zhou. Low loss, high extinction ratio plasmonic spot size converter. Asia Communications and Photonics Conference/International Conference on Information Photonics and Optical Communications, M4A.31(2020).

    [18] F. J. Diaz, T. Hatakeyama, J. Rho, Y. Wang, K. O. Brien, X. Zhang, C. Martijn De Sterke, B. T. Kuhlmey, S. Palomba. Sensitive method for measuring third order nonlinearities in compact dielectric and hybrid plasmonic waveguides. Opt. Express, 24, 545(2016).

    [19] M. Spasenović, A. Polman, L. K. Kuipers, E. Verhagen. Nanowire plasmon excitation by adiabatic mode transformation. Phys. Rev. Lett., 102, 203904(2009).

    [20] J. A. Dionne, H. J. Lezec, H. A. Atwater. Highly confined photon transport in subwavelength metallic slot waveguides. Nano Lett., 6, 1928(2006).

    [21] B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, J. R. Krenn. Dielectric stripes on gold as surface plasmon waveguides. Appl. Phys. Lett., 88, 094104(2006).

    [22] K.-Y. Jung, F. L. Teixeira, R. M. Reano. Surface plasmon coplanar waveguides: mode characteristics and mode conversion losses. IEEE Photonics Technol. Lett., 21, 630(2009).

    [23] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, T. W. Ebbesen. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 440, 508(2006).

    [24] D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, S. Matsuo. Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl. Phys. Lett., 87, 061106(2005).

    [25] Y. Bian, Q. Gong. Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes. Opt. Express, 21, 23907(2013).

    [26] K. Adhem, I. Avrutsky. Local field enhancement on demand based on hybrid plasmonic-dielectric directional coupler. Opt. Express, 24, 5699(2016).

    [27] M. Z. Alam, J. Stewart Aitchison, M. Mojahedi. Theoretical analysis of hybrid plasmonic waveguide. IEEE J. Sel. Top. Quantum Electron., 19, 4602008(2013).

    [28] V. Shahraam Afshar, T. M. Monro. A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity. Opt. Express, 17, 2298(2009).

    [29] A. Pitilakis, E. E. Kriezis. Highly nonlinear hybrid silicon-plasmonic waveguides: analysis and optimization. J. Opt. Soc. Am. B, 30, 1954(2013).

    [30] V. Shahraam Afshar, T. M. Monro, C. M. de Sterke. Understanding the contribution of mode area and slow light to the effective Kerr nonlinearity of waveguides. Opt. Express, 21, 18558(2013).

    [31] G. Li, C. M. de Sterke, S. Palomba. Figure of merit for Kerr nonlinear plasmonic waveguides. Laser Photonics Rev., 10, 639(2016).

    [32] R. Chen, B. Bai, F. Yang, Z. Zhou. Ultra-compact hybrid plasmonic mode convertor based on unidirectional eigenmode expansion. Opt. Lett., 45, 803(2020).

    [33] G. P. Agrawal. Nonlinear Fiber Optics(2000).

    Kejian Zhu, Pengfei Sun, Pengfei Xu, Xingpeng Liu, Tangyou Sun, Haiou Li, Zhiping Zhou. Kerr effect in ultra-compact hybrid plasmonic metal-insulator-metal nano-focusing structure[J]. Chinese Optics Letters, 2022, 20(3): 031903
    Download Citation