• Advanced Photonics
  • Vol. 3, Issue 6, 064001 (2021)
Jian Chen1, Chenhao Wan1、2, and Qiwen Zhan1、*
Author Affiliations
  • 1University of Shanghai for Science and Technology, School of Optical-Electrical and Computer Engineering, Shanghai, China
  • 2Huazhong University of Science and Technology, School of Optical and Electronic Information, Wuhan, China
  • show less
    DOI: 10.1117/1.AP.3.6.064001 Cite this Article Set citation alerts
    Jian Chen, Chenhao Wan, Qiwen Zhan. Engineering photonic angular momentum with structured light: a review[J]. Advanced Photonics, 2021, 3(6): 064001 Copy Citation Text show less
    References

    [1] A. Forbes, M. de Oliveira, M. R. Dennis. Structured light. Nat. Photonics, 15, 253-262(2021).

    [2] L. Allen, S. M. Barnett, M. J. Padgett. Optical Angular Momentum(2003).

    [3] D. L. Andrews, M. Babiker. The Angular Momentum of Light(2013).

    [4] S. J. van Enk, G. Nienhuis. Spin and orbital angular-momentum of photons. Europhys. Lett., 25, 497-501(1994).

    [5] S. Franke-Arnold, L. Allen, M. Padgett. Advances in optical angular momentum. Laser Photonics Rev., 2, 299-313(2008).

    [6] J. H. Poynting. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. R. Soc. Lond. A, 82, 560-567(1909).

    [7] R. A. Beth. Mechanical detection and measurement of the angular momentum of light. Phys. Rev., 50, 115-125(1936).

    [8] K. Y. Bliokh et al. Spin–orbit interactions of light. Nat. Photonics, 9, 796-808(2015).

    [9] L. Allen et al. Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [10] H. He et al. Direct observation of transfer of angular-momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett., 75, 826-829(1995).

    [11] A. Bekshaev, K. Y. Bliokh, M. Soskin. Internal flows and energy circulation in light beams. J. Opt., 13, 053001(2011).

    [12] V. Y. Bazhenov, M. V. Vasnetsov, M. S. Soskin. Laser beams with screw dislocations in their wavefronts. JETP Lett., 52, 429-431(1990).

    [13] A. S. Desyatnikov, Y. S. Kivshar, L. Torner. Optical vortices and vortex solitons. Prog. Opt., 47, 291-391(2005).

    [14] M. R. Dennis, K. O’Holleran, M. J. Padgett. Singular optics: optical vortices and polarization singularities. Prog. Opt., 53, 293-363(2009).

    [15] K. Y. Bliokh, A. Aiello, M. A. Alonso. Spin-Orbit Interactions of Light in Isotropic Media, 174-245(2012).

    [16] L. Allen, M. J. Padgett, M. Babiker. The orbital angular momentum of light. Prog. Opt., 39, 291-372(1999).

    [17] G. Molina-Terriza, J. P. Torres, L. Torner. Twisted photons. Nat. Phys., 3, 305-310(2007).

    [18] A. M. Yao, M. J. Padgett. Optical angular momentum: origins, behavior, and applications. Adv. Opt. Photonics, 3, 161-204(2011).

    [19] A. T. O’Neil et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett., 88, 053601(2002).

    [20] Y. Zhao et al. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett., 99, 073901(2007).

    [21] E. Wigner. On unitary representations of the inhomogeneous Lorentz group. Ann. Math., 40, 149-204(1939).

    [22] T. D. Newton, E. P. Wigner. Localized states for elementary systems. Rev. Mod. Phys., 21, 400-406(1949).

    [23] L. Mandel, E. Wolf. Optical Coherence and Quantum Optics(1995).

    [24] J. F. Nye, M. V. Berry. Dislocations in wave trains. Proc. R. Soc. Lond. Ser. A, 336, 165-190(1974).

    [25] D. Sarenac et al. Direct discrimination of structured light by humans. P. Natl. Acad. Sci. U. S. A., 117, 14682-14687(2020).

    [26] M. S. Soskin, M. V. Vasnetsov. Singular optics. Prog. Opt., 42, 219-276(2001).

    [27] W. Zhu et al. Transverse spin angular momentum of tightly focused full Poincaré beams. Opt. Express, 23, 34029-34041(2015).

    [28] K. Y. Bliokh, D. Smirnova, F. Nori. Quantum spin Hall effect of light. Science, 348, 1448-1451(2015).

    [29] M. H. Alizadeh, B. M. Reinhard. Emergence of transverse spin in optical modes of semiconductor nanowires. Opt. Express, 24, 8471-8479(2016).

    [30] P. Woźniak et al. Tighter spots of light with superposed orbital-angular-momentum beams. Phys. Rev. A, 94, 021803(2016).

    [31] J. Chen, C. Wan, Q. Zhan. Vectorial optical fields: recent advances and future prospects. Sci. Bull., 63, 54-74(2018).

    [32] A. Canaguier-Durand, C. Genet. Transverse spinning of a sphere in a plasmonic field. Phys. Rev. A, 89, 033841(2014).

    [33] M. Neugebauer et al. Magnetic and electric transverse spin density of spatially confined light. Phys. Rev. X, 8, 021042(2018).

    [34] M. Sotto et al. Spin-orbit coupling of light in photonic crystal waveguides. Phys. Rev. A, 99, 053845(2019).

    [35] J. Chen, D. Zhang, Q. Zhan. Effective iterative method for accurate amplitude modulation in complex optical field generation. Opt. Eng., 58, 082404(2019).

    [36] W. Miao, X. Pang, W. Liu. Photonic wheels and their topological reaction in a strongly focused amplitude tailored beam. IEEE Photonics J., 12, 6500709(2020).

    [37] S. He et al. Spatial differential operation and edge detection based on the geometric spin Hall effect of light. Opt. Lett., 45, 877-880(2020).

    [38] M. Mahankali et al. Spectral singularity enhances transverse spin. Opt. Commun., 454, 124433(2020).

    [39] D. R. Abujetas, J. A. Sánchez-Gil. Spin angular momentum of guided light induced by transverse confinement and intrinsic helicity. ACS Photonics, 7, 534-545(2020).

    [40] Z. Man, X. Dou, H. P. Urbach. The evolutions of spin density and energy flux of strongly focused standard full Poincaré beams. Opt. Commun., 458, 124790(2020).

    [41] N. Jhajj et al. Spatiotemporal optical vortices. Phys. Rev. X, 6, 031037(2016).

    [42] A. Aiello et al. From transverse angular momentum to photonic wheels. Nat. Photonics, 9, 789-795(2015).

    [43] E. Wolf. Electromagnetic diffraction in optical systems I. An integral representation of the image field. Proc. R. Soc. A, 253, 349-357(1959).

    [44] B. Richards, E. Wolf. Electromagnetic diffraction in optical system II. Structure of the image field in an aplanatic system. Proc. R. Soc. A, 253, 358-379(1959).

    [45] K. Y. Bliokh, A. Y. Bekshaev, F. Nori. Extraordinary momentum and spin in evanescent waves. Nat. Commun., 5, 3300(2014).

    [46] P. Banzer et al. The photonic wheel: demonstration of a state of light with purely transverse angular momentum. J. Eur. Opt. Soc. Rap. Public., 8, 13032(2013).

    [47] J. Chen et al. Experimental generation of complex optical fields for diffraction limited optical focus with purely transverse spin angular momentum. Opt. Express, 25, 8966-8974(2017).

    [48] A. Y. Bekshaev, K. Y. Bliokh, F. Nori. Transverse spin and momentum in two-wave interference. Phys. Rev. X, 5, 011039(2015).

    [49] S. Saha et al. Transverse spin and transverse momentum in scattering of plane waves. Opt. Lett., 41, 4499-4502(2016).

    [50] K. Y. Bliokh, F. Nori. Transverse spin of a surface polariton. Phys. Rev. A, 85, 061801(2012).

    [51] K. Y. Kim et al. Time reversal and the spin angular momentum of transverse-electric and trans-verse-magnetic surface modes. Phys. Rev. A, 86, 063805(2012).

    [52] D. O’Connor et al. Spin–orbit coupling in surface plasmon scattering by nanostructures. Nat. Commun., 5, 5327(2014).

    [53] L. Marrucci. Spin gives direction. Nat. Phys., 11, 9-10(2015).

    [54] A. B. Young et al. Polarization engineering in photonic crystal waveguides for spin-photon entanglers. Phys. Rev. Lett., 115, 153901(2015).

    [55] I. Söllner et al. Deterministic photon-emitter coupling in chiral photonic circuits. Nat. Nanotechnol., 10, 775-778(2015).

    [56] M. F. Picardi et al. Angular momenta, helicity, and other properties of dielectric-fiber and metallic-wire modes. Optica, 5, 1016-1026(2018).

    [57] F. Lei et al. Complete polarization control for a nanofiber waveguide using directional coupling. Phys. Rev. Appl., 11, 064041(2019).

    [58] R. Mitsch et al. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nat. Commun., 5, 5713(2014).

    [59] L. Hang, P. Chen, Y. Wang. Theoretical generation of arbitrarily homogeneously 3D spin-orientated optical needles and chains. Opt. Express, 27, 6047-6056(2019).

    [60] K. Y. Bliokh, F. Nori. Spatiotemporal vortex beams and angular momentum. Phys. Rev. A, 86, 033824(2012).

    [61] A. Chong et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photonics, 14, 350-354(2020).

    [62] S. W. Hancock et al. Free-space propagation of spatiotemporal optical vortices. Optica, 6, 1547-1553(2019).

    [63] J. Chen et al. Subwavelength focusing of spatio-temporal wave packet with transverse orbital angular momentum. Opt. Express, 28, 18472-18478(2020).

    [64] K. Y. Bliokh, A. Y. Bekshaev, F. Nori. Optical momentum, spin, and angular momentum in dispersive media. Phys. Rev. Lett., 119, 073901(2017).

    [65] Y. Shen et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [66] K. Y. Bliokh, F. Nori. Transverse and longitudinal angular momenta of light. Phys. Rep., 592, 1-38(2015).

    [67] K. Y. Bliokh, J. Dressel, F. Nori. Conservation of the spin and orbital angular momenta in electromagnetism. New J. Phys., 16, 093037(2014).

    [68] R. P. Cameron, S. M. Barnett. Electric-magnetic symmetry and Noether’s theorem. New J. Phys., 14, 123019(2012).

    [69] M. V. Berry. Optical currents. J. Opt. A: Pure Appl. Opt., 11, 094001(2009).

    [70] R. P. Cameron, S. M. Barnett, A. M. Yao. Optical helicity, optical spin, and related quantities in electromagnetic theory. New J. Phys., 14, 053050(2012).

    [71] R. M. A. Azzam, N. M. Bashara. Ellipsometry and Polarized Light(1977).

    [72] M. Neugebauer et al. Geometric spin Hall effect of light in tightly focused polarization-tailored light beams. Phys. Rev. A, 89, 013840(2014).

    [73] W. Chen, Q. Zhan. Diffraction limited focusing with controllable arbitrary three-dimensional polarization. J. Opt., 12, 045707(2010).

    [74] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics, 1, 1-57(2009).

    [75] J. Chen et al. Tightly focused optical field with controllable photonic spin orientation. Opt. Express, 25, 19517-19528(2017).

    [76] C. A. Balanis. Antenna Theory: Analysis and Design(2005).

    [77] M. Berry. Index formulae for singular lines of polarization. J. Opt. A: Pure Appl. Opt., 6, 675-678(2004).

    [78] T. Bauer et al. Optical polarization Möbius strips and points of purely transverse spin density. Phys. Rev. Lett., 117, 013601(2016).

    [79] T. Bauer et al. Observation of optical polarization Möbius strips. Science, 347, 964-966(2015).

    [80] L. Marrucci, C. Manzo, D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 96, 163905(2006).

    [81] A. Garcia-Etxarri. Optical polarization Möbius strips on all-dielectric optical scatterers. ACS Photonics, 4, 1159-1164(2017).

    [82] C. Wan, Q. Zhan. Generation of exotic optical polarization Möbius strips. Opt. Express, 27, 11516-11524(2019).

    [83] M. Leutenegger et al. Fast focus field calculations. Opt. Express, 14, 11277-11291(2006).

    [84] J. V. Cornacchio, R. P. Soni. On a relation between two-dimensional Fourier integrals and series of Hankel transforms. J. Res. Natl. Bureau Standards B, 69B, 173-174(1965).

    [85] A. M. Weiner. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum., 71, 1929-1960(2000).

    [86] H. Li et al. Three-dimensional laser pulse intensity diagnostic for photoinjectors. Phys. Rev. ST Accel. Beams, 14, 112802(2011).

    [87] C. Wan et al. Experimental demonstration of ultrafast wavepacket containing orbital angular momentum with controllable orientation. Natl. Sci. Rev., nwab149(2021).

    [88] J. Chen et al. Spin-orbit coupling within tightly focused circularly polarized spatiotemporal vortex wavepacket(2021).

    [89] K. Y. Bliokh. Spatiotemporal vortex pulses: angular momenta and spin-orbit interaction. Phys. Rev. Lett., 126, 243601(2021).

    [90] J. Chen et al. Experimental generation of cylindrical vector spatiotemporal optical vortex(2021).

    [91] L. Rego et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science, 364, eaaw9486(2019).

    [92] R. M. Kerber et al. Orbital angular momentum dichroism in nanoantennas. Commun. Phys., 1, 87(2018).

    [93] C. Wan et al. Generation of ultrafast spatiotemporal wave packet embedded with time-varying orbital angular momentum. Sci. Bull., 65, 1334-1336(2020).

    [94] P. C. Chaumet, M. Nieto-Vesperinas. Time-averaged total force on a dipolar sphere in an electromagnetic field. Opt. Lett., 25, 1065-1067(2000).

    [95] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [96] F. Nan, Z. Yan. Synergy of intensity, phase, and polarization enables versatile optical nanomanipulation. Nano Lett., 20, 2778-2783(2020).

    [97] Y. Yuan et al. Advances on studying optical forces: optical manipulation, optical cooling and light induced dynamics. J. Phys. D Appl. Phys., 53, 283001(2020).

    [98] K. Lin et al. Spatiotemporal rotational dynamics of laser-driven molecules. Adv. Photonics, 2, 024002(2020).

    [99] L. Paterson et al. Controlled rotation of optically trapped microscopic particles. Science, 292, 912-914(2001).

    [100] V. Garcés-Chávez et al. Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. Phys. Rev. Lett., 91, 093602(2003).

    [101] M. P. MacDonald et al. Creation and manipulation of three-dimensional optically trapped structures. Science, 296, 1101-1103(2002).

    [102] H. Adachi, S. Akahoshi, K. Miyakawa. Orbital motion of spherical microparticles trapped in diffraction patterns of circularly polarized light. Phys. Rev. A, 75, 063409(2007).

    [103] G. Tkachenko, M. Rafayelyan, E. Brasselet. Spin-orbit optomechanics of optically levitated chiral Bragg microspheres. Phys. Rev. A, 95, 053839(2017).

    [104] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [105] Y. Zhang et al. A plasmonic spanner for metal particle manipulation. Sci. Rep., 5, 15446(2015).

    [106] Y. Zhao, A. Saleh, J. A. Dionne. Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers. ACS Photonics, 3, 304-309(2016).

    [107] F. Cardano, L. Marrucci. Spin–orbit photonics. Nat. Photonics, 9, 776-778(2015).

    [108] F. J. Rodríguez-Fortuño et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science, 340, 328-330(2013).

    [109] Y. Tanaka, T. Shimura. Tridirectional polarization routing of light by a single triangular plasmonic nanoparticle. Nano Lett., 17, 3165-3170(2017).

    [110] N. Shitrit et al. Spin-optical metamaterial route to spin-controlled photonics. Science, 340, 724-726(2013).

    [111] Y. Yermakov et al. Spin control of light with hyperbolic metasurfaces. Phys. Rev. B, 94, 075446(2016).

    [112] J. Petersen, J. Volz, A. Rauschenbeutel. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science, 346, 67-71(2014).

    [113] M. Neugebauer et al. Polarization tailored light driven directional optical nanobeacon. Nano Lett., 14, 2546-2551(2014).

    [114] H. Hu et al. Routing emission with a multi-channel nonreciprocal waveguide. Photonics Res., 7, 642-646(2019).

    [115] A. Espinosa-Soria et al. On-chip optimal Stokes nanopolarimetry based on spin–orbit interaction of light. Nano Lett., 17, 3139-3144(2017).

    [116] Z. Xie et al. Broadband on-chip photonic spin Hall element via inverse design. Photonics Res., 8, 121-126(2020).

    [117] J. Wang. Advances in communications using optical vortices. Photonics Res., 4, B14-B28(2016).

    [118] I. Gianani et al. Transmission of vector vortex beams in dispersive media. Adv. Photonics, 2, 036003(2020).

    [119] D. J. Richardson, J. M. Fini, L. E. Nelson. Space-division multiplexing in optical fibres. Nat. Photonics, 7, 354-362(2013).

    [120] J. T. Barreiro, T. Wei, P. G. Kwiat. Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys., 4, 282-286(2008).

    [121] A. Trichili et al. Communicating using spatial mode multiplexing: potentials, challenges, and perspectives. IEEE Commun. Surv. Tutorials, 21, 3175-3203(2019).

    [122] A. E. Willner et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics, 7, 66-106(2015).

    [123] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [124] N. Bozinovic et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [125] T. Lei et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl., 4, e257(2015).

    [126] P. Jia et al. Sidelobe-modulated optical vortices for free-space communication. Opt. Lett., 38, 588-590(2013).

    [127] L. Li et al. High-capacity free-space optical communications between a ground transmitter and a ground receiver via a UAV using multiplexing of multiple orbital-angular-momentum beams. Sci. Rep., 7, 17427(2017).

    [128] N. Mphuthi et al. Free-space optical communication link with shape-invariant orbital angular momentum Bessel beams. Appl. Opt., 58, 4258-4264(2019).

    [129] L. Gong et al. Optical orbital-angular-momentum-multiplexed data transmission under high scattering. Light Sci. Appl., 8, 27(2019).

    [130] L. Zhu et al. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber. Opt. Express, 25, 25637-25645(2017).

    [131] Z. Xie et al. Integrated (de)multiplexer for orbital angular momentum fiber communication. Photonics Res., 6, 743-749(2018).

    [132] V. D’Ambrosio, E. Nagali, S. Walborn. Complete experimental toolbox for alignment-free quantum communication. Nat. Commun., 3, 961(2012).

    [133] M. P. J. Lavery et al. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

    [134] Y. Shen et al. Creation and control of high-dimensional multi-partite classically entangled light. Light Sci. Appl., 10, 50(2021).

    [135] Y. Shen et al. Measures of space-time nonseparability of electromagnetic pulses. Phys. Rev. Research, 3, 013236(2021).

    [136] G. Gui et al. Second-harmonic generation and the conservation of spatiotemporal orbital angular momentum of light. Nat. Photonics, 15, 608-613(2021).

    [137] S. W. Hancock, S. Zahedpour, H. M. Milchberg. Second harmonic generation of spatiotemporal optical vortices and conservation of orbital angular momentum. Optica, 8, 594-597(2021).

    [138] K. A. Forbes. Raman optical activity using twisted photons. Phys. Rev. Lett., 122, 103201(2019).

    [139] H. Hu, Q. Gan, Q. Zhan. Generation of a nondiffracting superchiral optical needle for circular dichroism imaging of sparse subdiffraction objects. Phys. Rev. Lett., 122, 223901(2019).

    [140] L. Du et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys., 15, 650-654(2019).

    CLP Journals

    [1] Ding Yan, Zhiyuan Zhong, Tong Qi, Hongying Chen, Wei Gao. High-fidelity parametric amplification of Ince–Gaussian beams[J]. Chinese Optics Letters, 2022, 20(11): 113801

    [2] Qiang Zhang, Zhenwei Xie, Peng Shi, Hui Yang, Hairong He, Luping Du, Xiaocong Yuan. Optical topological lattices of Bloch-type skyrmion and meron topologies[J]. Photonics Research, 2022, 10(4): 947

    Jian Chen, Chenhao Wan, Qiwen Zhan. Engineering photonic angular momentum with structured light: a review[J]. Advanced Photonics, 2021, 3(6): 064001
    Download Citation