• Laser & Optoelectronics Progress
  • Vol. 54, Issue 5, 50005 (2017)
Hou Youjun*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.050005 Cite this Article Set citation alerts
    Hou Youjun. Study Progress of Organic Polymeric Optical Waveguides[J]. Laser & Optoelectronics Progress, 2017, 54(5): 50005 Copy Citation Text show less
    References

    [1] Yoshimura R, Hikita M, Tomaru S, et al. Low-loss polymeric optical waveguides fabricated with deuterated polyfluoromethacrylate[J]. Journal of Lightwave Technology, 1998, 16(6): 1030-1037.

    [2] Maruno T, Matsuura T, Ando S, et al. Single-mode optical waveguide fabricated using fluorinated polyimides[J]. Nonlinear Optics, 1996, 15(1-4): 485-488.

    [3] Wang L D, Zhang T, Li R Z, et al. Synthesis and characterization of cross-linkable fluorinated polyimide for optical waveguide[J]. Applied Physics A, 2015, 118(2): 655-664.

    [4] Lee H J, Lee E M, Lee M H, et al. Crosslinkable fluorinated poly (arylene ethers) bearing phenyl ethynyl moiety for low-loss polymer optical waveguide devices[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 1998, 36(16): 2881-2887.

    [5] Qi Y H, Ding J F, Day M, et al. Cross-linkable highly fluorinated poly (arylene ether ketones/sulfones) for optical wave guiding applications[J]. Chemistry of Materials, 2005, 17(3): 676-682.

    [6] Zhang Junzhi. Synthesis of liquid PSQ used as optical waveguide materials by non-hydrolytic sol-gel technology[D]. Dalian: Dalian University of Technology, 2010.

    [7] Tung K K, Wong W H, Pun E Y B. Polymeric optical waveguides using direct ultraviolet photolithography process[J]. Applied Physics A, 2005, 80(3): 621-626.

    [8] Zhao X L, Yue Y B, Liu T, et al. Optimized design and fabrication of nanosecond response electro optic switch based on ultraviolet-curable polymers[J]. Chinese Physics B, 2015, 24(4): 184-192.

    [9] Cabanetos C, Mahé H, Blart E, et al. Preparation of a new electro-optic polymer cross-linkable via copper-free thermal Huisgen cyclo-addition and fabrication of optical waveguides by reactive ion etching[J]. ACS Applied Materials & Interfaces, 2011, 3(6): 2092-2098.

    [10] Singhal A R, Satyanarayan M N, Pal S. Fabrication of monomode channel waveguides in photosensitive polymer on optical adhesive[J]. Optical Engineering, 2011, 50(9): 094601.

    [11] Kruse K, Peng J, Middlebrook C T. Laser direct writing of complex radially varying single-mode polymer waveguide structures[J]. Journal of Micro/ Nanolithography Mems & Moems, 2015, 14(3): 034502.

    [12] Dong Mingming, Lin Geng, Zhao Quanzhong. Progress on femtosecond laser-fabricated waveguide devices in transparent dielectrics[J]. Laser & Optoelectronics Progress, 2013, 50(1): 010002.

    [13] Patzold W M, Reinhardt C, Demircan A, et al. Cascaded-focus laser writing of low-loss waveguides in polymers[J]. Optics Letters, 2016, 41(6): 1269-1272.

    [14] Zhou Bin. Femtosecond laser multi-photon micromachining[D]. Tianjin: Tianjin University, 2009.

    [15] Amirsolaimani B, Herrera O D, Himmelhuber R, et al. Electro-optic polymer channel waveguide fabrication using multiphoton direct laser writing[C]. IEEE Optical Interconnects Conference, 2015: 104-105.

    [16] Sun H S, Chen A T, Olbricht B C, et al. Polarization selective electro-optic polymer waveguide devices by direct electron beam writing[J]. Optics Express, 2008, 16(12): 8472-8479.

    [17] Jiang G M, Baig S, Wang M R. Flexible polymer waveguides with integrated mirrors fabricated by soft lithography for optical interconnection[J]. Journal of Lightwave Technology, 2013, 31(11): 1835-1841.

    [18] Large M, Poladian L, Barton G, et al. Microstructured polymer optical fibres[M]. US: Springer, 2008: 83-110.

    [19] Barton G, van Eijkelenborg M A, Henry G, et al. Fabrication of microstructured polymer optical fibres[J]. Optical Fiber Technology, 2004, 10(4): 325-335.

    [20] Wang J, Wang L. Carbon dioxide gas sensor derived from a 547-hole microstructured polymer optical fiber perform[J]. Optics Letters, 2010, 16(35): 3270-3272.

    [21] Zhang Y N, Li K, Wang L L, et al. Casting preforms for microstructured polymer optical fibre fabrication[J]. Optics Express, 2006, 14(12): 5541-5547.

    [22] Matsuoka Y, Adachi K, Lee Y, et al. A 25-G bit/s high-speed optical-electrical printed circuit board for chip-to-chip optical interconnections[C]. IEEE CPMT Symposium Japan, 2012: 1-4.

    [23] Wu Jinhua, Marika Immonen, Yan Huijuan, et al. Application of multimode polymer waveguide in optical-electrical printed circuit board[J]. Electronics Process Technology, 2015, 36(5): 291-294.

    [24] Jia K, Wang W, Tang Y, et al. Silicon-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating[J]. IEEE Photonics Technology Letters, 2005, 17(2): 378-380.

    [25] Chen C M, Wang H, Wang L, et al. Athermal polarization-independent 49-channel UV curable all-polymer arrayed waveguide grating (AWG) multiplexer[J]. Optik, 2015, 125(1): 521-525.

    [26] Cao T L, Zhao F Y, Da Z L, et al. A novel graphene oxide-polyimide as optical waveguide material: Synthesis and thermo-optic switch properties[J]. Optical Materials, 2016, 60: 45-49.

    [27] Wang X B, Jiang M H, Sun S Q, et al. Demonstration of a high-speed electro-optic switch with passive-to-active integrated waveguide based on SU-8 material[J]. RSC Advances, 2016, 6(55): 50166-50172.

    [28] Hu Guohua, Yun Binfeng, Cui Yiping. Polymer 1×32 waveguide thermo-optical switch array[J]. Journal of Optoelectronics·Laser, 2015, 26(10): 1873-1877.

    [29] Tsang K C, Wong C Y, Pun E Y B. Eu3+-doped planar optical polymer waveguide amplifiers[J]. IEEE Photonics Technology Letters, 2010, 22(14): 1024-1026.

    [30] Yin Jiao, Qu Chunyang, Zhang Meiling, et al. Gain characteristics of polymer waveguide amplifiers based on Er3+, Yb3+ co-doped nanocrystals[J]. Acta Optica Sinica, 2015, 35(12): 1216001.

    [31] Ren N F, Sun B, Chen M Y. Label-free optical biosensor based on a dual-core microstructured polymer optical fiber[J]. Optik, 2015, 126(21): 2930-2933.

    [32] Kong Depeng. Design, fabrication and applications of microstructured optical elements and devices[D]. Xi′an: Xi′an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2013.

    [33] Ji Jiangjun. Preliminary study of the key components in terahertz waveguide system[D]. Xi′an: Xi′an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2013.