
- Photonics Research
- Vol. 10, Issue 2, 373 (2022)
Abstract
1. INTRODUCTION
All-dielectric metasurfaces enabling light manipulation in two-dimensional photonic nanostructures have attracted great research interest recently. Compared to plasmonic devices, all-dielectric metasurfaces show characteristics of low optical absorption and unique Mie resonant modes [1–6]. A variety of novel photonic devices based on all-dielectric metasurfaces have been developed, including metalens [7–10], beam steerers [11–13], polarizers [14], and optical holography [15–21]. In the mid-infrared wavelength range, all-dielectric metasurfaces are promising for sensing, multispectral imaging, emissivity control, and infrared camouflage applications [22–27]. Nevertheless, most all-dielectric metasurfaces in the mid-infrared are static with fixed optical properties by design, which limit their application for tunable photonic devices.
Recently, active metasurfaces based on phase-change materials have attracted great research interest [28–37]. Phase-change materials such as
Here, we report a
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
2. EXPERIMENTAL PROCEDURE
Figure 1(a) shows the schematic of the
Figure 1.Device structure and process flow. (a) Process flow and schematics of the two hybrid α-
3. RESULTS AND DISCUSSION
Figures 2(a) and 2(c) show the simulated transmittance spectra of the HMB and HMM. Considering the trapezoid shape of the fabricated nanodisks shown in Figs. 1(b) and 1(c), the structures of our simulation are optimized to well match with the experiment results. The spectrum shows two dips at 3.6 μm and 4.2 μm, corresponding to the electric dipole resonance (ED) and magnetic dipole resonance (MD) modes, respectively. We observe the disappearance of the MD mode at the wavelength of 4.2 μm when
Figure 2.Tunable optical properties of HMB and HMM configurations. (a) Simulated and (b) measured transmittance spectra of the HMB configuration at dielectric and metallic states. (c) Simulated and (d) measured transmittance spectra of HMM configuration at dielectric and metallic states. Simulated transmission phase spectra of (e) HMB and (f) HMM configurations at dielectric and metallic states.
In order to study the mechanism of the active metasurface, near-field modal distributions of both the HMB and HMM devices are simulated, as shown in Fig. 3. Figure 3(a) shows the normalized electric field profiles of the ED mode at around 3.6 μm wavelength in the x–z plane of the HMB device. The color contour indicates the electric field profile. The white arrows indicate the electric field vector distribution. When
Figure 3.Modal profiles of the HMB and HMM devices at ED and MD wavelengths, for both the dielectric state (D state) and the metallic state (M state). (a) Electric field distributions of ED mode at the dielectric state (left) and the metallic state (right) for the HMB device. (b) Electric field distributions of MD mode at the dielectric state (left) and the metallic state (right) for the HMB device. (c) Electric field distributions of the ED mode for the dielectric state (left) and the metallic state (right) of the HMM device. (d) Electric field distributions of MD mode for the dielectric state (left) and the metallic state (right) of the HMM device.
Figure 4.Multipolar decomposition of the scattering cross sections. Scattering cross-section spectra of ED and MD modes of (a) HMB and (b) HMM configurations at the dielectric and metallic states. Simulated and fitted transmission spectra of (c) HMB and (d) HMM configurations for different metallic fractions of
4. CONCLUSION
In summary, we demonstrate a mid-infrared active metasurface based on
Acknowledgment
Acknowledgment. L. B. and T. K. conceived and designed the experiment. T. K. and B. F. performed the sample fabrication, and L. B. and J. Q. supervised the project. All authors discussed the research.
APPENDIX A: SAMPLE FABRICATION
The
The hybrid meta-atoms were fabricated by EBL and inductively coupled plasma-reactive ion etching (ICP-RIE). First, a 120 nm thick hydrogen silsesquioxane resist layer was spin-coated on the multilayer films with a spin speed of 4000 r/min. The sample was then baked on a hot plate for 1 min at 150°C. Then the nanodisk patterns were exposed by EBL using an acceleration voltage of 10 kV and an average dose of
APPENDIX B: OPTICAL CHARACTERIZATION
The transmission spectra were measured by an FTIR spectrometer (Perkin Elmer) equipped with a reflective focusing infrared microscope (Spotlight 2000i). The spot size was
APPENDIX C: SIMULATION AND MULTIPOLAR DECOMPOSITION
The simulation of the transmittance spectra and near-field modal profiles was performed using the commercial software COMSOL Multiphysics. Periodic boundary conditions were used around the nanodisks. The port boundary condition was used to define the polarization and angle of incidence. To avoid the effect of scattered light, a perfectly matched layer was set at the top and bottom layers near the port. The transmittance spectra were calculated using the simulated S parameters in COMSOL. The optical constants of
To perform multipolar decomposition, we calculated the scattering field of the nanodisks embedded in a homogeneous medium using COMSOL.
References
[1] J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, S. I. Bozhevolnyi. Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5. Nat. Commun., 10, 396(2019).
[2] D. R. Abujetas, Á. Barreda, F. Moreno, A. Litman, J. M. Geffrin, J. A. Sánchez-Gil. High-
[3] H. M. Doeleman, F. Monticone, W. Den Hollander, A. Alù, A. F. Koenderink. Experimental observation of a polarization vortex at an optical bound state in the continuum. Nat. Photonics, 12, 397-401(2018).
[4] A. Howes, Z. Zhu, D. Curie, J. R. Avila, V. D. Wheeler, R. F. Haglund, J. G. Valentine. Optical limiting based on Huygens’ metasurfaces. Nano Lett., 20, 4638-4644(2020).
[5] A. Howes, W. Wang, I. Kravchenko, J. Valentine. Dynamic transmission control based on all-dielectric Huygens metasurfaces. Optica, 5, 787-792(2018).
[6] S. Yuan, X. Qiu, C. Cui, L. Zhu, Y. Wang, Y. Li, J. Song, Q. Huang, J. Xia. Strong photoluminescence enhancement in all-dielectric Fano metasurface with high quality factor. ACS Nano, 11, 10704-10711(2017).
[7] M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. A. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, T. Gu. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat. Commun., 12, 1225(2021).
[8] S. Gao, C. S. Park, C. Zhou, S. S. Lee, D. Y. Choi. Twofold polarization-selective all-dielectric trifoci metalens for linearly polarized visible light. Adv. Opt. Mater., 7, 1900883(2019).
[9] C. Schlickriede, S. S. Kruk, S. S. Kruk, L. Wang, B. Sain, Y. Kivshar, T. Zentgraf. Nonlinear imaging with all-dielectric metasurfaces. Nano Lett., 20, 4370-4376(2020).
[10] L. Yu, Y. Fan, Y. Wang, C. Zhang, W. Yang, Q. Song, S. Xiao. Spin angular momentum controlled multifunctional all-dielectric metasurface doublet. Laser Photonics Rev., 14, 1900324(2020).
[11] S. Q. Li, X. Xu, R. M. Veetil, V. Valuckas, R. Paniagua-Domínguez, A. I. Kuznetsov. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 364, 1087-1090(2019).
[12] T. Shi, Y. Wang, Z. L. Deng, X. Ye, Z. Dai, Y. Cao, B. O. Guan, S. Xiao, X. Li. All-dielectric kissing-dimer metagratings for asymmetric high diffraction. Adv. Opt. Mater., 7, 1901389(2019).
[13] P. C. Wu, R. A. Pala, G. Kafaie Shirmanesh, W. H. Cheng, R. Sokhoyan, M. Grajower, M. Z. Alam, D. Lee, H. A. Atwater. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun., 10, 3654(2019).
[14] S. Wang, Z. L. Deng, Y. Wang, Q. Zhou, X. Wang, Y. Cao, B. O. Guan, S. Xiao, X. Li. Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincaré sphere polarizers. Light Sci. Appl., 10, 24(2021).
[15] G. Qu, W. Yang, Q. Song, Y. Liu, C. W. Qiu, J. Han, D. P. Tsai, S. Xiao. Reprogrammable meta-hologram for optical encryption. Nat. Commun., 11, 5484(2020).
[16] S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, S. Xiao. Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces. ACS Nano, 12, 2151-2159(2018).
[17] X. Zhang, Q. Wang, Q. Xu, X. Zhang, C. Tian, Y. Xu, J. Gu, Z. Tian, C. Ouyang, J. Han, W. Zhang. All-dielectric meta-holograms with holographic images transforming longitudinally. ACS Photonics, 5, 599-606(2018).
[18] M. A. Ansari, I. Kim, D. Lee, M. H. Waseem, M. Zubair, N. Mahmood, T. Badloe, S. Yerci, T. Tauqeer, M. Q. Mehmood, J. Rho. A spin-encoded all-dielectric metahologram for visible light. Laser Photonics Rev., 13, 1900065(2019).
[19] B. Reineke, B. Sain, R. Zhao, L. Carletti, B. Liu, L. Huang, C. De Angelis, T. Zentgraf. Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography. Nano Lett., 19, 6585-6591(2019).
[20] X. Guo, P. Li, J. Zhong, S. Liu, B. Wei, W. Zhu, S. Qi, H. Cheng, J. Zhao. Tying polarization-switchable optical vortex knots and links via holographic all-dielectric metasurfaces. Laser Photonics Rev., 14, 1900366(2020).
[21] Q. Wei, B. Sain, Y. Wang, B. Reineke, X. Li, L. Huang, T. Zentgraf. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces. Nano Lett., 19, 8964-8971(2019).
[22] K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, J. Wu. A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition. Adv. Mater., 32, 1907071(2020).
[23] L. Long, S. Taylor, L. Wang. Enhanced infrared emission by thermally switching the excitation of magnetic polariton with scalable microstructured VO2 metasurfaces. ACS Photonics, 7, 2219-2227(2020).
[24] K. Tang, K. Dong, C. J. Nicolai, Y. Li, J. Li, S. Lou, C. W. Qiu, D. H. Raulet, J. Yao, J. Wu. Millikelvin-resolved ambient thermography. Sci. Adv., 6, eabd8688(2020).
[25] H. Zuo, D. Y. Choi, X. Gai, P. Ma, L. Xu, D. N. Neshev, B. Zhang, B. Luther-Davies. High-efficiency all-dielectric metalenses for mid-infrared imaging. Adv. Opt. Mater., 5, 1700585(2017).
[26] C. Yan, X. Li, M. Pu, X. Ma, F. Zhang, P. Gao, K. Liu, X. Luo. Midinfrared real-time polarization imaging with all-dielectric metasurfaces. Appl. Phys. Lett., 114, 161904(2019).
[27] T. Lewi, N. A. Butakov, J. A. Schuller. Thermal tuning capabilities of semiconductor metasurface resonators. Nanophotonics, 8, 331-338(2018).
[28] S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, H. Zhang. A deep learning approach for objective-driven all-dielectric metasurface design. ACS Photonics, 6, 3196-3207(2019).
[29] C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, D. P. Tsai. Active dielectric metasurface based on phase-change medium. Laser Photonics Rev., 10, 986-994(2016).
[30] A. Leitis, A. Heßler, S. Wahl, M. Wuttig, T. Taubner, A. Tittl, H. Altug. All-dielectric programmable Huygens’ metasurfaces. Adv. Funct. Mater., 30, 1910259(2020).
[31] S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. A. Eftekhar, W. Cai, E. Pop, M. A. El-Sayed, A. Adibi. Dynamic hybrid metasurfaces. Nano Lett., 21, 1238-1245(2021).
[32] Y. Wang, P. Landreman, D. Schoen, K. Okabe, A. Marshall, U. Celano, H. S. P. Wong, J. Park, M. L. Brongersma. Electrical tuning of phase-change antennas and metasurfaces. Nat. Nanotechnol., 16, 667-672(2021).
[33] Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, J. Hu. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol., 16, 661-666(2021).
[34] Y. Kim, P. C. Wu, R. Sokhoyan, K. Mauser, R. Glaudell, G. Kafaie Shirmanesh, H. A. Atwater. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces. Nano Lett., 19, 3961-3968(2019).
[35] B. Gholipour, A. Karvounis, J. Yin, C. Soci, K. F. MacDonald, N. I. Zheludev. Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces. NPG Asia Mater., 10, 533-539(2018).
[36] C. Ruiz De Galarreta, I. Sinev, A. M. Arseny, P. Trofimov, K. Ladutenko, S. G.-C. Carrillo, E. Gemo, A. Baldycheva, J. Bertolotti, C. D. Wright. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica, 7, 476-484(2020).
[37] M. N. Julian, C. Williams, S. Borg, S. Bartram, H. J. Kim. Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging. Optica, 7, 746-754(2020).
[38] S. G. C. Carrillo, L. Trimby, Y. Y. Au, V. K. Nagareddy, G. Rodriguez-Hernandez, P. Hosseini, C. Ríos, H. Bhaskaran, C. D. Wright. A nonvolatile phase-change metamaterial color display. Adv. Opt. Mater., 7, 1801782(2019).
[39] X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, H. Giessen. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light Sci. Appl., 6, e17016(2017).
[40] C. R. de Galarreta, A. M. Alexeev, Y. Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, C. D. Wright. Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared. Adv. Funct. Mater., 28, 1704993(2018).
[41] A. Ahmadivand, B. Gerislioglu, R. Sinha, M. Karabiyik, N. Pala. Optical switching using transition from dipolar to charge transfer plasmon modes in Ge2Sb2Te5 bridged metallodielectric dimers. Sci. Rep., 7, 42807(2017).
[42] A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, H. Giessen. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv. Mater., 27, 4597-4603(2015).
[43] S. Chandra, D. Franklin, J. Cozart, A. Safaei, D. Chanda. Adaptive multispectral infrared camouflage. ACS Photonics, 5, 4513-4519(2018).
[44] P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, R. D. Schaller. Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching. ACS Nano, 11, 693-701(2017).
[45] K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. De Groot, O. L. Muskens. VO2 thermochromic metamaterial-based smart optical solar reflector. ACS Photonics, 5, 2280-2286(2018).
[46] J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, M. A. Kats. Active optical metasurfaces based on defect-engineered phase-transition materials. Nano Lett., 16, 1050-1055(2016).
[47] P. Kepič, F. Ligmajer, M. Hrtoň, H. Ren, L. D. S. Menezes, S. A. Maier, T. Šikola. Optically tunable Mie resonance VO2 nanoantennas for metasurfaces in the visible. ACS Photonics, 8, 1048-1057(2021).
[48] A. Tripathi, J. John, S. Kruk, Z. Zhang, H. S. Nguyen, L. Berguiga, P. R. Romeo, R. Orobtchouk, S. Ramanathan, Y. Kivshar, S. Cueff. Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-transition materials. ACS Photonics, 8, 1206-1213(2021).
[49] Y. Hu, X. Ou, T. Zeng, J. Lai, J. Zhang, X. Li, X. Luo, L. Li, F. Fan, H. Duan. Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region. Nano Lett., 21, 4554-4562(2021).
[50] B. Zeng, Z. Huang, A. Singh, Y. Yao, A. K. Azad, A. D. Mohite, A. J. Taylor, D. R. Smith, H. T. Chen. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci. Appl., 7, 51(2018).
[51] M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, H. A. Atwater. Experimental demonstration of >230° phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces. Nano Lett., 17, 3027-3034(2017).
[52] P. P. Iyer, M. Pendharkar, C. J. Palmstrøm, J. A. Schuller. Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates. Nat. Commun., 8, 472(2017).
[53] J. Li, Y. Chen, Y. Hu, H. Duan, N. Liu. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display. ACS Nano, 14, 7892-7898(2020).
[54] C. Li, W. Zhu, Z. Liu, R. Pan, S. Hu, S. Du, J. Li, C. Gu. Independent tuning of bright and dark meta-atoms with phase change materials on EIT metasurfaces. Nanoscale, 12, 10065-10071(2020).
[55] L. Yang. Thermal tuning intelligent infrared absorber(2017).

Set citation alerts for the article
Please enter your email address