• Photonics Research
  • Vol. 10, Issue 8, 1819 (2022)
Qiancheng Xu1、2, Kaiyu Cui1、2、*, Ning Wu1、2, Xue Feng1、2, Fang Liu1、2, Wei Zhang1、2、3, and Yidong Huang1、2、3
Author Affiliations
  • 1Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
  • 2Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
  • 3Beijing Academy of Quantum Information Sciences, Beijing, China
  • show less
    DOI: 10.1364/PRJ.447711 Cite this Article Set citation alerts
    Qiancheng Xu, Kaiyu Cui, Ning Wu, Xue Feng, Fang Liu, Wei Zhang, Yidong Huang. Tunable mechanical-mode coupling based on nanobeam-double optomechanical cavities[J]. Photonics Research, 2022, 10(8): 1819 Copy Citation Text show less
    References

    [1] M. Spletzer, A. Raman, A. Q. Wu, X. Xu, R. Reifenberger. Ultrasensitive mass sensing using mode localization in coupled microcantilevers. Appl. Phys. Lett., 88, 254102(2006).

    [2] H. Okamoto, N. Kitajima, K. Onomitsu, R. Kometani, S. Warisawa, S. Ishihara, H. Yamaguchi. High-sensitivity charge detection using antisymmetric vibration in coupled micromechanical oscillators. Appl. Phys. Lett., 98, 014103(2011).

    [3] C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, M. A. Sillanpää. Stabilized entanglement of massive mechanical oscillators. Nature, 556, 478-482(2018).

    [4] R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, S. Gröblacher. Remote quantum entanglement between two micromechanical oscillators. Nature, 556, 473-477(2018).

    [5] I. Mahboob, H. Okamoto, K. Onomitsu, H. Yamaguchi. Two-mode thermal-noise squeezing in an electromechanical resonator. Phys. Rev. Lett., 113, 167203(2014).

    [6] A. Pontin, M. Bonaldi, A. Borrielli, L. Marconi, F. Marino, G. Pandraud, G. A. Prodi, P. M. Sarro, E. Serra, F. Marin. Dynamical two-mode squeezing of thermal fluctuations in a cavity optomechanical system. Phys. Rev. Lett., 116, 103601(2016).

    [7] D. Zhu, X.-H. Wang, W.-C. Kong, G.-W. Deng, J.-T. Wang, H.-O. Li, G. Cao, M. Xiao, K.-L. Jiang, X.-C. Dai, G.-C. Guo, F. Nori, G.-P. Guo. Coherent phonon rabi oscillations with a high-frequency carbon nanotube phonon cavity. Nano Lett., 17, 915-921(2017).

    [8] M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, M. Lipson. Synchronization of micromechanical oscillators using light. Phys. Rev. Lett., 109, 233906(2012).

    [9] M. Bagheri, M. Poot, L. Fan, F. Marquardt, H. X. Tang. Photonic cavity synchronization of nanomechanical oscillators. Phys. Rev. Lett., 111, 213902(2013).

    [10] F. D. Bannon, J. R. Clark, C. T.-C. Nguyen. High-Q HF microelectromechanical filters. IEEE J. Solid-State Circuits, 35, 512-526(2000).

    [11] R. B. Karabalin, R. Lifshitz, M. C. Cross, M. H. Matheny, S. C. Masmanidis, M. L. Roukes. Signal amplification by sensitive control of bifurcation topology. Phys. Rev. Lett., 106, 094102(2011).

    [12] K. Fang, M. H. Matheny, X. Luan, O. Painter. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photonics, 10, 489-496(2016).

    [13] Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, O. Painter. Coherent mixing of mechanical excitations in nano-optomechanical structures. Nat. Photonics, 4, 236-242(2010).

    [14] H. Xu, D. Mason, L. Jiang, J. G. E. Harris. Topological energy transfer in an optomechanical system with exceptional points. Nature, 537, 80-83(2016).

    [15] G. Luo, Z.-Z. Zhang, G.-W. Deng, H.-O. Li, G. Cao, M. Xiao, G.-C. Guo, L. Tian, G.-P. Guo. Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity. Nat. Commun., 9, 383(2018).

    [16] Z.-L. Xiang, S. Ashhab, J. Q. You, F. Nori. Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys., 85, 623-653(2013).

    [17] G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P. Rabl, J. Schmiedmayer. Quantum technologies with hybrid systems. Proc. Natl. Acad. Sci. USA, 112, 3866-3873(2015).

    [18] A. A. Clerk, K. W. Lehnert, P. Bertet, J. R. Petta, Y. Nakamura. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys., 16, 257-267(2020).

    [19] I. Buluta, F. Nori. Quantum simulators. Science, 326, 108-111(2009).

    [20] A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore. Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys., 83, 863-883(2011).

    [21] A. Mezzacapo, L. Lamata, S. Filipp, E. Solano. Many-body interactions with tunable-coupling transmon qubits. Phys. Rev. Lett., 113, 050501(2014).

    [22] A. O. Niskanen, K. Harrabi, F. Yoshihara, Y. Nakamura, S. Lloyd, J. S. Tsai. Quantum coherent tunable coupling of superconducting qubits. Science, 316, 723-726(2007).

    [23] Y. Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R. Barends, J. Kelly, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, A. Megrant, J. Y. Mutus, P. J. J. O’Malley, C. M. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, M. R. Geller, A. N. Cleland, J. M. Martinis. Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett., 113, 220502(2014).

    [24] F. Yan, P. Krantz, Y. Sung, M. Kjaergaard, D. L. Campbell, T. P. Orlando, S. Gustavsson, W. D. Oliver. Tunable coupling scheme for implementing high-fidelity two-qubit gates. Phys. Rev. Appl., 10, 054062(2018).

    [25] R. Fleury, D. Sounas, A. Alù. An invisible acoustic sensor based on parity-time symmetry. Nat. Commun., 6, 5905(2015).

    [26] C. Shi, M. Dubois, Y. Chen, L. Cheng, H. Ramezani, Y. Wang, X. Zhang. Accessing the exceptional points of parity-time symmetric acoustics. Nat. Commun., 7, 11110(2016).

    [27] T. Faust, J. Rieger, M. J. Seitner, J. P. Kotthaus, E. M. Weig. Coherent control of a classical nanomechanical two-level system. Nat. Phys., 9, 485-488(2013).

    [28] E. S. Leland, P. K. Wright. Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload. Smart Mater. Struct., 15, 1413-1420(2006).

    [29] T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, K. W. Lehnert. Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature, 495, 210-214(2013).

    [30] A. P. Reed, K. H. Mayer, J. D. Teufel, L. D. Burkhart, W. Pfa, X. Ma, R. J. Schoelkopf, E. Knill, K. W. Lehnert. Faithful conversion of propagating quantum information to mechanical motion. Nat. Phys., 13, 1163-1167(2017).

    [31] A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, A. N. Cleland. Quantum ground state and single-phonon control of a mechanical resonator. Nature, 464, 697-703(2010).

    [32] K. Cui, Z. Huang, N. Wu, Q. Xu, F. Pan, J. Xiong, X. Feng, F. Liu, W. Zhang, Y. Huang. Phonon lasing in a hetero optomechanical crystal cavity. Photon. Res., 9, 937-943(2021).

    [33] F. Pan, K. Cui, G. Bai, X. Feng, F. Liu, W. Zhang, Y. Huang. Radiation-pressure-antidamping enhanced optomechanical spring sensing. ACS Photon., 5, 4164-4169(2018).

    [34] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 548, 187-191(2017).

    [35] W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [36] Z. Huang, K. Cui, G. Bai, X. Feng, F. Liu, W. Zhang, Y. Huang. High-mechanical-frequency characteristics of optomechanical crystal cavity with coupling waveguide. Sci. Rep., 6, 34160(2016).

    [37] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [38] J. Zhang, B. Peng, S. Kim, F. Monifi, X. Jiang, Y. Li, P. Yu, L. Liu, Y. Liu, A. Alù, L. Yang. Optomechanical dissipative solitons. Nature, 600, 75-80(2021).

    [39] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478, 89-92(2011).

    [40] T. Carmon, L. Yang, K. J. Vahala. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 12, 4742-4750(2004).

    [41] N. Wu, K. Cui, X. Feng, F. Liu, W. Zhang, Y. Huang. Hetero-optomechanical crystal zipper cavity for multimode optomechanics. Photonics, 9, 78(2022).

    [42] K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, P. Zoller. Cavity-assisted squeezing of a mechanical oscillator. Phys. Rev. A, 79, 063819(2009).

    [43] X. Xu, Y. Liu, C. Sun, Y. Li. Mechanical PT symmetry in coupled optomechanical systems. Phys. Rev. A, 92, 013852(2015).

    [44] Z. Feng, J. Ma, X. Sun. Parity–time-symmetric mechanical systems by the cavity optomechanical effect. Opt. Lett., 43, 4088-4091(2018).

    [45] Ş. K. Özdemir, S. Rotter, F. Nori, L. Yang. Parity–time symmetry and exceptional points in photonics. Nat. Mater., 18, 783-798(2019).

    [46] T. J. Johnson, M. Borselli, O. Painter. Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator. Opt. Express, 14, 817-831(2006).

    [47] D. Woolf, P. Hui, E. Iwase, M. Khan, A. W. Rodriguez, P. Deotare, I. Bulu, S. G. Johnson, F. Capasso, M. Loncar. Optomechanical and photothermal interactions in suspended photonic crystal membranes. Opt. Express, 21, 7258-7275(2013).

    Qiancheng Xu, Kaiyu Cui, Ning Wu, Xue Feng, Fang Liu, Wei Zhang, Yidong Huang. Tunable mechanical-mode coupling based on nanobeam-double optomechanical cavities[J]. Photonics Research, 2022, 10(8): 1819
    Download Citation