• Photonics Research
  • Vol. 10, Issue 8, 1819 (2022)
Qiancheng Xu1,2, Kaiyu Cui1,2,*, Ning Wu1,2, Xue Feng1,2..., Fang Liu1,2, Wei Zhang1,2,3 and Yidong Huang1,2,3|Show fewer author(s)
Author Affiliations
  • 1Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
  • 2Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
  • 3Beijing Academy of Quantum Information Sciences, Beijing, China
  • show less
    DOI: 10.1364/PRJ.447711 Cite this Article Set citation alerts
    Qiancheng Xu, Kaiyu Cui, Ning Wu, Xue Feng, Fang Liu, Wei Zhang, Yidong Huang, "Tunable mechanical-mode coupling based on nanobeam-double optomechanical cavities," Photonics Res. 10, 1819 (2022) Copy Citation Text show less

    Abstract

    Tunable coupled mechanical resonators with nonequilibrium dynamic phenomena have attracted considerable attention in quantum simulations, quantum computations, and non-Hermitian systems. In this study, we propose tunable mechanical-mode coupling based on nanobeam-double optomechanical cavities. The excited optical mode interacts with both symmetric and antisymmetric mechanical supermodes and mediates coupling at a frequency of approximately 4.96 GHz. The mechanical-mode coupling is tuned through both optical spring and gain effects, and the reduced coupled frequency difference in non-Hermitian parameter space is observed. These results benefit research on the microscopic mechanical parity–time symmetry for topology and on-chip high-sensitivity sensors.
    x¨1+(Γm+Γopt)x˙1+(Ωm+δΩm)2x1+Ωmkx2=F1/meff,x¨2+Γmx˙2+Ωm2x2+Ωmkx1=F2/meff,

    View in Article

    a˙=(iΔγo2)a+iGx1a+γocsin,x¨1=Ωm2x1Γmx˙1Ωmκx2+G|a|2/meff+F1/meff,x¨2=Ωm2x2Γmx˙2Ωmκx1+F2/meff,(B1)

    View in Article

    a˙=(iΔ¯γo2)a+iGa¯x1,x¨1=Ωm2x1Γmx˙1Ωmκx2+G(a¯*a+a¯a*)/meff+F1/meff,x¨2=Ωm2x2Γmx˙2Ωmκx1+F2/meff,(B2)

    View in Article

    a¯=γocsiniΔ¯+γo/2,x¯1=Ga¯2meff(Ωm2κ2),x¯2=κΩmGa¯2meff(Ωm2κ2),(B3)

    View in Article

    x¨++(Γm+12Γopt)x˙++(Ωm2+Ωmκ+ΩmδΩm)x+=ΩmδΩmx12Γoptx˙+F+/meff,x¨+(Γm+12Γopt)x˙+(Ωm2Ωmκ+ΩmδΩm)x=ΩmδΩmx+12Γoptx˙++F/meff,(B4)

    View in Article

    δΩm=8g2Ωmγo2+16Ωm2,Γopt=4g2γo16Ωm2γo2+16Ωm2(B5)

    View in Article

    ϵ1(ω)a(ω)=iGa¯x1(ω),χ11(ω)x1(ω)=Ωmκx2(ω)+F1(ω)/meff,χ21(ω)x2(ω)=Ωmκx1(ω)+F2(ω)/meff,(B6)

    View in Article

    ϵ1(ω)=i(ω+Δ¯)+γo2,χ11(ω)=Ωm2ω2iωΓmiΣ(ω),χ21(ω)=Ωm2ω2iωΓm,Σ(ω)=G2|a¯|2meff[ϵ(ω)ϵ*(ω)],(B7)

    View in Article

    x1(ω)=F1/meffΩmκF2/meffχ2χ11Ωm2κ2χ2.(B8)

    View in Article

    Io=|sinγoc(a¯+a)|2I¯oγoc(din*a+dina*),(B9)

    View in Article

    din=(1γociΔ+γo/2)sin.(B10)

    View in Article

    SII(ω)=|H(ω)|2Sxx(ω),(B11)

    View in Article

    H(ω)=iγocGa¯[din*ϵ(ω)dinϵ*(ω)],(B12)

    View in Article

    Sxx(ω)=1+Ωm2κ2|χ2(ω)|2|χ11(ω)Ωm2κ2χ2(ω)|2SFF(ω)meff2.(B13)

    View in Article

    a˙(t)=[iΔ(t)γo2]a(t)+γcain(t),ΔT˙(t)=γthΔT(t)+ηscp,m(γlin+γFCA)|a(t)|2,N˙(t)=γfcN(t)+βfc|a(t)|4,(C1)

    View in Article

    Δ(t)=ωlωo+ωo[1ndndTΔT(t)+1ndndNN(t)].(C2)

    View in Article

    Qiancheng Xu, Kaiyu Cui, Ning Wu, Xue Feng, Fang Liu, Wei Zhang, Yidong Huang, "Tunable mechanical-mode coupling based on nanobeam-double optomechanical cavities," Photonics Res. 10, 1819 (2022)
    Download Citation