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Tunable coupled mechanical resonators with nonequilibrium dynamic phenomena have attracted considerable
attention in quantum simulations, quantum computations, and non-Hermitian systems. In this study, we propose
tunable mechanical-mode coupling based on nanobeam-double optomechanical cavities. The excited optical
mode interacts with both symmetric and antisymmetric mechanical supermodes and mediates coupling at a fre-
quency of approximately 4.96 GHz. The mechanical-mode coupling is tuned through both optical spring and gain
effects, and the reduced coupled frequency difference in non-Hermitian parameter space is observed. These results
benefit research on the microscopic mechanical parity–time symmetry for topology and on-chip high-sensitivity
sensors. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.447711

1. INTRODUCTION

Mechanical resonators exhibiting nanomechanical or microme-
chanical motion with long-lifetime vibrational phonon modes
have been studied extensively for classical and quantum infor-
mation processing. Multi-mechanical resonators are used in ap-
plications such as ultrasensitive sensing [1,2], macroscopic
quantum entanglement [3,4], dual-mode squeezing [5,6], co-
herent Rabi oscillation [7], synchronization [8,9], and informa-
tion processing [10–12]. Therefore, some chip-based coupled
mechanical resonators, including microdisk cavities [8,13], sil-
icon nitride membranes [14], carbon nanotubes [7], graphene
[15], and photonic crystals [12,13], have been reported to de-
velop integrated hybrid quantum systems [16–18].

With these advances, tunable coupled mechanical resonators
have attracted considerable attention because these resonators
are used to investigate nonequilibrium dynamic phenomena
in quantum simulation [19–21], minimize decoherence errors
caused by unwanted interactions in quantum computation
[22–24], and determine exceptional points (EPs) in non-
Hermitian systems [14,25,26]. In coupled mechanical resona-
tors, system parameters including frequency, coupling rate,
and dissipation can be controlled by applying the electrostatic
field [27], piezoelectric actuator [28], or cavity optomechanical
(OM) interaction [13]. Among these techniques, cavity optome-
chanics, which describes nonlinear interaction between the light
and mechanical modes in the same resonator, has been developed
rapidly [7–15], and coherent mixing in a tunable zipper cavity

and double-disk cavity with frequency approximately 10 MHz
has been demonstrated [13]. However, some important applica-
tions need higher mechanical frequencies with larger tunability,
such as quantum information processing [3,4,29,30], where a
critical prerequisite is requiring mechanical resonators with
frequencies beyond the GHz range for mechanical quantum
ground states in the resolve sideband regime (mechanical reso-
nant frequency larger than the optical dissipation rate) [29–31].
Tunable coupled mechanical resonators with high mechanical
frequency have great potential for realizing high-sensitivity
EPs sensors with an increased resistance to environmental dis-
turbances and sensing bandwidth [32,33], and investigating
non-Hermitian systems with multi-physics scenarios [14,25,26].
Therefore, the realization of coupled mechanical resonators with
both high frequency and large tunability is crucial for quantum
information and non-Hermitian systems.

In this study, we propose the manipulation of mechanical-
mode coupling beyond GHz range based on nanobeam-double
OM cavities (OMCs) by using optical spring and optical gain
effects. The optical spring effect was used to change the
mechanical-mode frequency to realize mode degeneracy of
two mechanical resonators. Furthermore, the optical gain effect
was exploited to manipulate mechanical coupling by adjusting
mechanical loss. The influence of the mechanical coupling in-
teraction was analyzed using coupled-mode theory. In experi-
ments, mechanical-mode coupling between two mechanical
supermodes of the proposed structure with a frequency of
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approximately 4.96 GHz was realized through asymmetric
tapered fiber coupling. The frequency difference of the two
mechanical supermodes can be dynamically controlled by
changing the power and wavelength of the pump laser. This
result can provide a guideline for achieving microscopic
mechanical parity–time symmetry to realize topology [14]
and high-sensitivity sensor chips [34,35].

2. CAVITY STRUCTURES AND MECHANICAL-
MODE COUPLING

In the nanobeam-double OMCs studied here, two identical
nanobeam OMCs are connected along the nanobeam length
direction to form side-coupled cascaded cavities, as displayed in
Figs. 1(a) and 1(b). The single OMC is designed based on our
previous work [36]. The period of the unit cell is 380 nm, and
the width of nanobeam is 500 nm. The radius of the air hole
in the mirror cell is 105 nm, and the radius of the air hole in
the defect cell is 125.5 nm. Three mechanical modes with
frequencies of 4.96 GHz (fundamental mode), 5.14 GHz
(second mode), and 5.28 GHz (third mode) are obtained by
the finite element method and their OM coupling rates
(g0∕2π) with the same optical mode are 0.57, 0.65, and
0.28 MHz, respectively.

The two single OMCs are coupled through energy exchange
in the center mirror region between the two cavities, leading to
the emergence of mechanical supermodes. For the mechanical
fundamental modes, two supermodes are categorized into the
symmetric supermode (SSM) and antisymmetric supermode
(ASM). The former is the mechanical modes in the two single
OMCs vibrating in the same direction, and the latter is that
vibrating in the opposite direction, as illustrated in Fig. 1(c).
The frequency difference caused by the mode splitting between

SSM and ASM reflects the mechanical coupling rate. For the
proposed nanobeam-double OMCs, the mechanical coupling
rate is determined by the design of the center mirror between the
two cavities. The calculated mechanical coupling rate changes
with the quantity and the radius of the center mirror cell, as
presented in Fig. 1(e). A low mechanical coupling rate contrib-
uted considerably to the mechanical-mode coupling change
monitored by the OM interaction in our system and is an es-
sential factor in observing parity–time symmetry and sensing ap-
plication. Therefore, the mechanical coupling rate is designed to
approximately 1 MHz to satisfy the weak coupling condition.

When the tapered fiber is set near one end of the nanobeam
[Fig. 1(a)], the symmetric distribution of the refractive index
for the two optical cavities in the nanobeam structure is broken.
Thus, the optical field is localized in one cavity (detailed sim-
ulation can be seen in Appendix A), as displayed in Fig. 1(d).
This type of optical mode design has one advantage in that the
excited optical mode can interact with both mechanical SSM
and ASM.

For the proposed OMCs as a dissipative system, mechanical
coupling interaction is determined not only by the mechanical
coupling rate but also by the mechanical loss because the
mechanical energy exchange process is influenced by various
lifetimes of mechanical modes, corresponding to mechanical
loss. Based on this principle, we used the optical damping (gain
for blue-detuned pump) effect [37,38] to change the mechani-
cal loss in OM interaction to control the mechanical coupling
process. This process can be described by the following
mechanical coupling equation:

ẍ1 � �Γm � Γopt�_x1 � �Ωm � δΩm�2x1 �Ωmkx2 � F 1∕meff ,

ẍ2 � Γm _x2 �Ω2
mx2 � Ωmkx1 � F 2∕meff , (1)

Fig. 1. Nanobeam-double optomechanical cavities (OMCs). (a) Schematic of asymmetric photonic coupling of a tapered fiber contacting one end
of the nanobeam-double OMCs. The distances between the tapered fiber and the two original single cavities are different, which breaks the sym-
metric refractive index distribution and leads to only one excited optical mode of the double cavities in (d). The inset image presents a schematic of
the nanobeam-double OMCs. The green parts are cavity defect regions formed by gradually varied hole radius. The gray parts are cavity mirrors for
both optical and mechanical modes. (b) Top-view scanning electron microscope (SEM) micrograph of the nanobeam-double OMCs.
(c) Normalized displacement of the mechanical symmetric supermode (SSM) and antisymmetric supermode (ASM). (d) Normalized Ey of the
excited optical mode by the asymmetric photonic coupling fiber. (e) Mechanical cavity coupling rate with center mirror cell quantity and center
mirror radius.
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where x1 and x2 are displacements of the mechanical single cav-
ity mode, κ is the mechanical coupling rate, meff is the effective
mass of the mechanical mode, and F 1 and F 2 are fluctuating
forces. To simplify the physical model, mechanical frequency
Ωm and intrinsic loss Γm of the two modes were set to be equal.
Furthermore, Γopt is the optical damping rate, and δΩm is the
optical spring detuning because of OM interaction. Unlike the
mechanical coupling rate, the optical damping rate and optical
spring detuning were not fixed, which depended on the pump
power and pump wavelength of light. The optical damping rate
was considerably greater than the intrinsic mechanical loss,
which provided a large-scale mechanical loss control at a high
pump power [39]. Because we used blue-detuned pump light,
the OM interaction generated gain instead of loss contributed
to the mechanical-mode coupling change in our experiments
(detailed discussions are presented in Appendix B).

3. EXPERIMENTS FOR ACHIEVING TUNABLE
MECHANICAL-MODE COUPLING

In this experiment, the patterns of the designed structures were
defined by using electron beam lithography (EBL), and then
these patterns were transferred to the device layer of silicon-
on-insulator (SOI) chips using inductively coupled plasma
(ICP) etching. Afterward, buffered hydrofluoric (BHF) acid
was used to remove the buried oxide layer and form suspended
structures.

After the fabrication process, we measured the mechanical
coupling of the fabricated nanobeam-double OMCs by using
the experimental setup in Fig. 2(a). The optical modes of the
nanobeam-double OMCs were detected by using a tapered
fiber on one end of the nanobeam. According to the Lorentz
fitting of the spectrum at −20 dBm of pump power [Fig. 2(b)],
the intrinsic optical Q factor for the fabricated cavity was
86,000. The mechanical spectrum information was obtained
by analyzing the power spectral density (PSD) of the output
light transmission. Figure 2(c) displays the PSD results at a

pump power of 0 dBm. The mechanical fundamental mode
and two high-order modes are observed in the spectrum.
Inside the resonance peak of the fundamental mode, two
mechanical modes were obtained for the two mechanical-
mode couplings, as displayed in the inset of Fig. 2(c), which is
the enlarged image of the fundamental mode. By placing the
tapered fiber on the other end of nanobeam, the previous two
peaks were still observed, which proved the mechanical-mode
coupling between two cavities (see Appendix A for details).

We measured the OM tuning of the nanobeam-double
OMCs by changing the pump light power and wavelength.
Figure 3(a) displays the coupling process of the two mechanical
modes by changing the pump wavelength. The difference in
two resonance peaks representing mechanical eigen frequencies
at the beginning decreases and then increases when the pump
laser wavelength shifts toward red. This result can be ex-
plained by the OM gain effect (theoretical details are shown
in Appendix B). By fitting the power spectrum of the two
coupled mechanical resonators, we plotted the non-Hermitian
parameter space diagram of two mechanical-mode eigen
frequencies for various pump powers and wavelengths. The
smallest mechanical eigen frequency difference decreased from
2.0 MHz at a pump power of 0 dBm to 1.0 MHz at a pump
power of 5 dBm. This result revealed that the frequency differ-
ence of the symmetric and antisymmetric mechanical mode was
tuned to diminish in the parameter space. This phenomenon
can provide guidance for obtaining microscopic mechanical
parity–time symmetry (see Appendix B for details) for topology
[14] and on-chip high-sensitivity sensors [34,35].

4. DISCUSSION ON THE THERMAL EFFECT

We observed the OM interaction and thermal nonlinear effect
[40] simultaneously with the increase in pump power. The
thermal effect [41] is a common phenomenon in high-Q op-
tical cavities caused by dielectric absorption. In the low-power
regime for the driving laser, the optical resonance frequency

Fig. 2. Experimental setup and optical and mechanical results. (a) Schematic of the experimental setup for mechanical and optical measurement.
(b) Optical transmission spectrum with laser power of −20, 0, and 5 dBm. (c) Power spectral density (PSD) for the three types of mechanical modes
observed in the spectrum analyzer. The inset displays the detailed PSD of the fundamental modes. The dotted lines are the fitting results reflecting
two mechanical-mode couplings.
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depends on the laser wavelength, as displayed in the asymmet-
ric transmission spectrum in Fig. 2(b). When the laser power
exceeded a critical point, the system operated in a bistable re-
gion in which the optical energy in the cavity exhibited two
possibilities determined by the driving process. The influence
of the thermal bistable phenomenon on OM interaction was
circumvented by adiabatically tuning the pump wavelength
and power. However, the operation becomes complex when
the pump power increases further. The thermal effect enhanced
the driving of the bistable region to the self-oscillation region.
In this case, the optical energy in the cavity oscillated with
a frequency of approximately 20 MHz. The oscillations were
determined by material properties and structure geometry
(a detailed discussion is given in Appendix C). As the optical
energy affects the OM interaction, in the self-oscillation region,
the OM interaction and thermal nonlinear effect mixed and
determined the complete dynamical characteristic of the sys-
tem. In the mechanical power spectrum, multi-peaks appeared
at approximately the mechanical-mode resonance frequencies
when the system was driven across the border of the self-
oscillation region [Fig. 4(a)]. These peak signals were caused
by the thermal nonlinear effect and moved in the frequency

domain with the variation in laser wavelength. Near the border
of the self-oscillation region, the mechanical signals decreased
rapidly, which revealed that OM interaction decreased. This
phenomenon can be qualitatively explained as follows: in a
thermal self-oscillation period, averaged optical energy in the
cavity was less than that in the steady state. Although OM in-
teraction was affected by the thermal nonlinear effect, the two
coupled mechanical modes were distinguished by the asymmet-
ric resonance peak in the frequency spectrum near the mechani-
cal mode, as displayed in Fig. 4(b). In this case, the mechanical
couplings in the stable and self-oscillation regions are denoted
with black and red lines, respectively.

5. CONCLUSION

In this study, we realized tunable mechanical-mode coupling by
using nanobeam-double OMCs. The mechanical coupling pro-
cess can be controlled with the OM gain inside the optically
pumped cavity by breaking the optical spatial symmetry in the
proposed structure. The frequency difference of the SSM and
ASM was tuned to diminish from 2.0 to 1.0 MHz by changing
the power and wavelength of the pump laser in experiment and

Fig. 3. Optical control of the two mechanical-mode couplings. (a) Normalized mechanical power spectrum density for various pump wavelengths.
The red dashed lines reveal the resonance frequencies of two coupled modes. The inset presents an enlarged view of the mechanical spectrum at laser
wavelength of 1551.04 nm with the two-component fits. (b) The non-Hermitian parameter space diagram of mechanical-mode coupling with pump
power and pump wavelength. The blue and yellow sheets each represent a mechanical mode.

Fig. 4. (a) Thermal oscillation PSD of the nanobeam-double OMCs for various optical wavelengths. The gray and pink regions refer to the
thermal stable state and thermal self-oscillation, respectively. (b) Mechanical-mode coupling in the stable region (black line) and self-oscillation
region (red lines). The blue dashed lines indicate two mechanical modes.
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was further limited by the opto-thermal self-sustained oscilla-
tion phenomenon. The tuning of the mechanical-mode cou-
pling based on our demonstrated double OMCs can be
used in parity–time symmetry, quantum information, high-
sensitivity EP sensing, and mechanical synchronization.

APPENDIX A: ASYMMETRIC OPTICAL
COUPLING WITH A TAPERED FIBER SETTING
ASIDE

We simulated the optical eigen mode of nanobeam-double
OMCs by using a bent fiber. The fiber is parallel with the nano-
beam, and the lowest point of the fiber touches one end of the
nanobeam, as displayed in Fig. 1. Thus, the tapered fiber set-
ting breaks the optical spatial symmetry of the double cavities,
and only one of the nanobeam-double OMCs can be optically
excited.

In our simulation, the radius of the fiber was set to 0.5 μm,
and the bending radius was set to 250 μm. Figure 5 displays the
simulation results. The two optical resonance frequencies red-
shifted 1.6 and 6.8 nm when the fiber contact point was
close to the cavity. The optical modes of the two optical cavities
changed with the fiber contact position, as displayed in
Fig. 5(a). To quantitatively determine the influence of fiber
coupling, we defined “optical mode isolation” as the ratio
of the optical field energy in one cavity to the other cavity,
as presented in Fig. 5(b). An isolation of more than 15 dB
can be obtained by using asymmetric fiber coupling, which
satisfies the requirement of only one excited optical mode for
optical manipulation of mechanical-mode coupling. In our
practical measurement, the isolation is estimated as 10 dB from
the depth of two optical resonant peaks in the transmission
spectrum shown in Fig. 2(b). It indicates that the influence
of optical mode coupling through the waveguide can be
ignored. Thus, the two mechanical peaks [Figs. 2(c) and 3(a)]
do not result from optical coupling, and these two modes are
coupled via the mechanical connection.

In the experiment, the optical fiber was set on both ends
of the nanobeam to confirm mode coupling between the two
resonators. Figure 6 displays the results of this experiment. In
both cases, at approximately 4.77 GHz, the existence of two
superposed asymmetric resonance peaks revealed that the
mechanical modes were coupled.

APPENDIX B: MECHANICAL-MODE COUPLING
THEORY

We derived the expressions describing the tuning OM cou-
pling. We started from the classical equations of motion for
the light amplitude (a) and the displacements (x1,2):

_a �
�
iΔ −

γo
2

�
a� iGx1a�

ffiffiffiffiffiffi
γoc

p
sin,

ẍ1 � −Ω2
mx1 − Γm _x1 −Ωmκx2 � ℏGjaj2∕meff � F 1∕meff ,

ẍ2 � −Ω2
mx2 − Γm _x2 −Ωmκx1 � F 2∕meff , (B1)

where Δ � ωl − ωo is the optical frequency in a frame rotating
at pumping frequency ωl, and γo is the optical decay rate com-
posed of intrinsic loss γi and waveguide coupling rate γoc.
Parameter sin is the pumping light at the input of the cavity.
Furthermore, meff , Ωm, and Γm are mechanical effective mass,
frequency, and loss, respectively; G is the linear OM coupling
rate describing optical frequency shift per displacement; κ is the
mechanical coupling rate; and F 1,2 are fluctuating forces. As the
laser power is lower than the mechanical lasing threshold, lin-
earization approximation (a → ā� a, x1,2 → x̄1,2 � x1,2) is
sufficient to describe our system. Therefore, we obtained the
following expression:

Fig. 5. (a) Optical resonance wavelengths and (b) optical mode isolation as a function of the contact position along the length direction of the
nanobeam-double OMCs. The insets in (a) illustrate the normalized electric y component of the optical modes of the two optical cavities.

Fig. 6. Superposed asymmetric mechanical modes of the nano-
beam-double OMCs. The two curves are the experimental results
of the power spectral density (PSD) for the optical fiber on the various
ends of the nanobeam.
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_a�
�
iΔ̄−

γo
2

�
a� iGāx1,

ẍ1�−Ω2
mx1−Γm _x1−Ωmκx2�ℏG�ā�a� āa��∕meff �F 1∕meff ,

ẍ2�−Ω2
mx2−Γm _x2−Ωmκx1�F 2∕meff , (B2)

ā �
ffiffiffiffiffiffi
γoc

p
sin

−iΔ̄� γo∕2
,

x̄1 �
ℏGā2

meff �Ω2
m − κ2� ,

x̄2 � −
κ

Ωm

ℏGā2

meff �Ω2
m − κ2� , (B3)

where Δ̄ � Δ� Gx̄ is the corrected detuning. Because the
optical decay rate (γo∕2π ∼ 6.5 GHz) is considerably larger
than the OM coupling (Gāxzpf ∕2π ∼ 0.5 GHz) in our system,
the optical mode can be adiabatically eliminated [42,43].
Therefore, we defined x� � x1 � x2 as displacement of
mechanical SSM and x− � x1 − x2 as displacement of mechani-
cal ASM. The mechanical equations can be rewritten as follows:

ẍ� �
�
Γm � 1

2
Γopt

�
_x� � �Ω2

m � Ωmκ �ΩmδΩm�x�

� −ΩmδΩmx− −
1

2
Γopt _x− � F�∕meff ,

ẍ− �
�
Γm � 1

2
Γopt

�
_x− � �Ω2

m −Ωmκ� ΩmδΩm�x−

� −ΩmδΩmx� −
1

2
Γopt _x� � F −∕meff , (B4)

where

δΩm � 8g2Ωm

γ2o � 16Ω2
m
,

Γopt � −
4g2

γo

16Ω2
m

γ2o � 16Ω2
m

(B5)

are mechanical frequency shift and OM damping rate when
Δ̄ � Ωm (minus sign means gain for blue-detuned pump)
[37]. Clearly, the coupling between the SSM and ASM modes
is controlled by the laser in the system. Equation (B4) indicates
that mechanical SSM and ASM are no longer orthogonal when
OM interaction exists. To obtain the steady-state solution, we
display the linearized Eq. (B2) in the frequency space as follows:

ϵ−1�ω�a�ω� � iGāx1�ω�,
χ−11 �ω�x1�ω� � −Ωmκx2�ω� � F 1�ω�∕meff ,

χ−12 �ω�x2�ω� � −Ωmκx1�ω� � F 2�ω�∕meff , (B6)

where

ϵ−1�ω� � −i�ω� Δ̄� � γo
2
,

χ−11 �ω� � Ω2
m − ω2 − iωΓm − iΣ�ω�,

χ−12 �ω� � Ω2
m − ω2 − iωΓm,

Σ�ω� � ℏG2jāj2
meff

�ϵ�ω� − ϵ��−ω��, (B7)

where ϵ�ω� and χ1,2�ω� are optical and two mechanical-mode
susceptibilities, respectively. Here, Σ�ω� reflects the influence
of OM interaction on mechanical frequency and loss.
Equation (B6) reveals that mechanical displacement can be ob-
tained from mechanical fluctuation forces:

x1�ω� �
F 1∕meff −ΩmκF 2∕meff χ2

χ−11 −Ω2
mκ

2χ2
: (B8)

The optical output power can be obtained from input–
output theory as follows:

I o � jsin −
ffiffiffiffiffiffi
γoc

p �ā� a�j2 ≈ Ī o −
ffiffiffiffiffiffi
γoc

p �d�
ina� d ina��, (B9)

d in �
�
1 −

γoc
−iΔ� γo∕2

�
sin: (B10)

By using Eq. (B6), the PSD of the output power signal
SII�ω�, except for a frequency of 0 Hz, can be expressed as
follows:

SII�ω� � jH �ω�j2Sxx�ω�, (B11)

H �ω� � −i
ffiffiffiffiffiffi
γoc

p
Gā�d�

inϵ�ω� − d inϵ
��−ω��, (B12)

where Sxx�ω� is the PSD of mechanical displacement, and
x1�ω� and H �ω� are the transfer functions from mechanical
displacement to output power. As the optical susceptibility is
slowly varied, transfer function H �ω� is a constant H �Ωm�.
Therefore, the mechanical motion information can be directly
obtained from the PSD of output power:

Sxx�ω� �
1�Ω2

mκ
2jχ2�ω�j2

jχ−11 �ω� −Ω2
mκ

2χ2�ω�j2
SFF�ω�
m2

eff

: (B13)

It is noted that this system shows the potential for demon-
strating mechanical parity–time symmetry [43–45]. Here we
used Ωm∕2π � 5 GHz,Γm∕2π � 3 MHz, γ0∕2π � 5 GHz,
k∕2π � 1:25 MHz, and γoc∕2π � 0:25 GHz. Thereafter, we
calculated the eigenvalues of the mechanical modes, and Fig. 7
demonstrates the difference of the real part of the mechanical
eigenvalues. In this simulation, the frequency evolves with these

Fig. 7. Calculated non-Hermitian parameter space diagram of nor-
malized mechanical frequency difference with pump power and detun-
ing Δ. The blue and yellow sheets each represent a mechanical mode.
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system parameters (pump power and detuning) and corre-
sponds to the Riemann surface. In addition, the EP appears
when the pump power is close to 4 dBm. Figure 8 demonstrates
the typical mechanical frequency evolution that corresponds to
the experimental spectra in Fig. 3(a). Although the observation
of some features of the Riemann sheet, such as the EPs shown
in Fig. 7, has been hindered by the self-pulsing effect, we be-
lieve that these features can be observed successfully after alle-
viating the influence of the nonlinear thermal effect in the
next step.

APPENDIX C: THERMAL NONLINEARITY

Thermal nonlinearity is the main limitation of optical control
because at a high pump power, thermal self-oscillation domi-
nates when the laser wavelength approaches the cavity reso-
nance. Figure 9(a) illustrates the optical transmission at a
pump power of 5 dBm in which the cavity resonance is colored

by gray and pink, referring to the thermal stable state and ther-
mal self-oscillation, respectively. The thermal stable state region
can be categorized into monostability and bistability regions
[40], which indicates that the optical cavity energy has two
possibilities depending on the initial conditions. In our experi-
ment, we measured the mechanical spectrum density variation
by sweeping the laser from the short wavelength to the long
wavelength. Only the continuously variable mechanical state
was observed during each measurement, which was explained
by adiabatic evolution. Therefore, optically controlling the
mechanical mode is feasible in the opto-thermal bistability
region.

In the thermal self-oscillation region, in addition to thermal
nonlinearity, two-photon absorption and free carrier absorption
are the other two main nonlinear processes in silicon that can
influence the optical control of mechanical modes [46]. The
rate equations of optical field amplitude (a), temperature varia-
tion (ΔT ), and free carrier density (N ) are as follows:

_a�t� �
�
iΔ�t� − γo

2

�
a�t� � ffiffiffiffi

γc
p

ain�t�,

Δ _T �t� � −γthΔT �t� � ηs
cp,m

�γlin � γFCA�ja�t�j2,

_N �t� � −γfcN �t� � βfcja�t�j4, (C1)

where the detuning of the input laser frequency from the cavity
resonance peak is expressed as follows:

Δ�t� � ωl − ωo � ωo

�
1

n
dn
dT

ΔT �t� � 1

n
dn
dN

N �t�
�
: (C2)

The last item represents the cavity resonance frequency
variation caused by the thermo-optic and free carrier dispersion
effects. In silicon, the thermo-optic effect causes the redshift of
the resonance, and the free carrier dispersion effect causes the
resonance blueshift, which leads to a competitive relationship.
Generally, the thermal decay is much slower than the carrier
decay [46,47]. In our device, the thermal decay rate is estimated

Fig. 8. Mechanical frequency of the corresponding spectra in
Fig. 3(a) versus optical wavelength. The orange and blue circles reveal
the resonance frequencies of two coupled modes. The inset shows the
error bar of the fitted frequency, which is almost negligible.

Fig. 9. (a) Optical transmission of the double cavity at a high pump power of 5 dBm. The gray region reveals the optical thermal stable state
(including thermal bistability), and the red region denotes the optical thermal self-oscillation. (b) Experimental observation of thermal self-
oscillations in a single optomechanical cavity. (c) Details of the pulse front dominated by free carrier dispersion.
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to be around 10 MHz since the volume of our OMC is two
orders of magnitude smaller than that of the optical microdisk
cavity reported in Ref. [46]. Therefore, during the self-oscilla-
tion process, cavity resonance was transiently blue detuned by
free carriers, causing the cavity resonance to move away from
the fixed laser frequency. Subsequently, the thermal effect
played a major role in the large redshift until the cavity optical
field decreased to zero, and finally, the optical resonance re-
turned to the initial position through thermal relaxation, form-
ing a complete period of motion.

Figure 9(b) displays the time-domain signal of a single-cavity
output measured by the oscilloscope in the self-oscillation region.
To remove the mechanical motion interferences, we placed the
tapered fiber on the center of the cavity to generate a large
mechanical vibration damping. The pulse front [Fig. 9(c)] rep-
resents the resonance blueshift due to free carrier dispersion, and
the thermal effect dominates the remaining time in one pulse
period. Figure 9(b) reveals the oscillation period; duty factors
are 26.7MHz and 39.8%, respectively, and both of these param-
eters can be controlled by the laser power and laser wavelength.

In conclusion, the frequency difference in symmetric and
antisymmetric mechanical modes of nanobeam-double OMCs
can be tuned by changing the power and wavelength of the
pump laser, and the mechanical frequency changing process
is affected by the opto-thermal self-sustained oscillation phe-
nomenon at a high pump light power.
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