• Journal of Inorganic Materials
  • Vol. 35, Issue 7, 769 (2020)
Zehui LI1, Meijuan TAN2, Yuanhao ZHENG3, Yuyang LUO3, Qiushi JING3, Jingkun JIANG1, and Mingjie LI4、*
Author Affiliations
  • 1State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
  • 2Nanjing University of Information Science and Technology, Nanjing 210044, China
  • 3School of Environmental Science and Engineering, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
  • 4CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Biomass Energy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
  • show less
    DOI: 10.15541/jim20190433 Cite this Article
    Zehui LI, Meijuan TAN, Yuanhao ZHENG, Yuyang LUO, Qiushi JING, Jingkun JIANG, Mingjie LI. Application of Conductive Metal Organic Frameworks in Supercapacitors[J]. Journal of Inorganic Materials, 2020, 35(7): 769 Copy Citation Text show less
    References

    [1] T MEHTAB, G YASIN, M ARIF et al. Metal-organic frameworks for energy storage devices: batteries and supercapacitors. J. Energy Storage, 21, 632-646(2019).

    [2] Z FAN, J YAN, W TONG et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater, 21, 2366-2375(2011).

    [3] W CHEN, H YU, Y LEE S et al. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem. Soc. Rev, 47, 2837-2872(2018).

    [4] J CHENG, S CHEN, D CHEN et al. Editable asymmetric all-solid-state supercapacitors based on high-strength, flexible, and programmable 2D-metal-organic framework/reduced graphene oxide self-assembled papers. J. Mater. Chem. A, 6, 20254-20266(2018).

    [5] W XUAN, C ZHU, Y LIU et al. Mesoporous metal-organic framework materials. Chem. Soc. Rev, 41, 1677-1695(2012).

    [6] L ZHU Q, Q XU. Metal-organic framework composites. Chem. Soc. Rev, 43, 5468-5512(2014).

    [7] S ZHENG, X LI, B YAN et al. Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv. Energy Mater, 7, 1602733(2017).

    [8] L JIANG, L SHENG, C LONG et al. Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors. Nano Energy, 11, 471-480(2015).

    [9] S SUNDRIYAL, H KAUR, K BHARDWAJ S et al. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coord. Chem. Rev, 369, 15-38(2018).

    [10] X LI L, J TAO, X GENG et al. Preparation and supercapacitor performance of nitrogen-doped carbon nanotubes from polyaniline modification. Acta Phys-Chim. Sin, 29, 924-929(2013).

    [11] J YAN, W TONG, S BO et al. Preparation of a graphene nanosheet/ polyaniline composite with high specific capacitance. Carbon, 48, 487-493(2010).

    [12] V SUBRAMANIAN, H ZHU, R VAJTAI et al. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Physi. Chem. B, 109, 20207-20214(2005).

    [13] Q WANG, Z WEN, L JINGHONG. A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode. Adv. Funct. Mater, 16, 2141-2146(2010).

    [14] C ROWSELL J L, M YAGHI O. Metal-organic frameworks: a new class of porous materials. Micropor. Mesopor. Mat, 73, 3-14(2004).

    [15] H HENDON C, D TIANA, A WALSH. Conductive metal-organic frameworks and networks: fact or fantasy?. Phys. Chem. Chem. Phys, 14, 13120-13132(2012).

    [16] Y KOBAYASHI, B JACOBS, D ALLENDORF M et al. Conductivity, doping, and redox chemistry of a microporous dithiolene-based metal-organic framework. Chem. Mater, 22, 4120-4122(2010).

    [17] F GÁNDARA, J URIBE-ROMO F, K BRITT D et al. Porous, conductive metal-triazolates and their structural elucidation by the charge-flipping method. Chem. Eur-J, 18, 10595-10601(2012).

    [18] R LI, H WANG S, X CHEN X et al. Highly anisotropic and water molecule-dependent proton conductivity in a 2D homochiral copper (II) metal-organic framework. Chem. Mater, 29, 2321-2331(2017).

    [19] M SADAKIYO, T YAMADA, H KITAGAWA. Rational designs for highly proton-conductive metal-organic frameworks. J. Am. Chem. Soc, 131, 9906-9007(2009).

    [20] M SADAKIYO, T YAMADA, H KITAGAWA. Proton conductivity control by ion substitution in a highly proton-conductive metal-organic framework. J. Am. Chem. Soc, 136, 13166-13169(2014).

    [21] M TAYLOR J, S DEKURA, R IKEDA et al. Defect control to enhance proton conductivity in a metal-organic framework. Chem. Mater, 27, 2286-2289(2015).

    [22] M KO, L MENDECKI, A MIRICA K. Conductive two-dimensional metal-organic frameworks as multifunctional materials. Chem. Commun, 54, 7873-7891(2018).

    [23] L SUN, H HENDON C, A MINIER M et al. Million-fold electrical conductivity enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E=S, O). J. Am. Chem. Soc, 137, 6164-6167(2015).

    [24] S LIN, M USOV P, J MORRIS A. The role of redox hopping in metal-organic framework electrocatalysis. Chem. Commun, 54, 6965-6974(2018).

    [25] Y LEE D, V SHINDE D, K KIM E et al. Supercapacitive property of metal-organic-frameworks with different pore dimensions and morphology. Micropor. Mesopor. Mat, 171, 53-57(2013).

    [26] H HUANG, R LI J, K WANG et al. An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks. Nat. Commun, 6, 8847(2015).

    [27] J HOU, C CAO, F IDREES et al. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano, 9, 2556-2564(2015).

    [28] Y TAN, W ZHANG, Y GAO et al. Facile synthesis and supercapacitive properties of Zr-metal organic frameworks (UiO-66). RSC Adv, 5, 17601-17605(2015).

    [29] H LI W, D KUI, R TIAN H et al. Conductive metal-organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv. Funct. Mater, 27, 1702067(2017).

    [30] D SHEBERLA, C BACHMAN J, S ELIAS J et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater, 16, 220-224(2017).

    [31] C WEI, B RAKHI R, Q WANG et al. Morphological and electrochemical cycling effects in MnO2 nanostructures by 3D electron tomography. Adv. Funct. Mater, 24, 3130-3143(2014).

    [32] Y CHEN, N DAN, X YANG et al. Microwave-assisted synthesis of honeycomblike hierarchical spherical Zn-doped Ni-MOF as a high-performance battery-type supercapacitor electrode material. Electrochim. Acta, 278, 114-123(2018).

    [33] J ZHANG, B HAN. Supercritical or compressed CO2 as a stimulus for tuning surfactant aggregations. Accounts Chem. Res, 46, 425-433(2013).

    [34] H YU, D XU, Q XU. Dual template effect of supercritical CO2 in ionic liquid to fabricate a highly mesoporous cobalt metal-organic framework. Chem. Commun, 51, 13197-13200(2015).

    [35] N CAMPAGNOL, R ROMERO-VARA, W DELEU et al. A hybrid supercapacitor based on porous carbon and the metal-organic framework MIL-100(Fe). ChemElectroChem, 1, 1182-1188(2014).

    [36] Y LEE D, J YOON S, K SHRESTHA N et al. Unusual energy storage and charge retention in Co-based metal-organic-frameworks. Micropor. Mesopor. Mat, 153, 163-165(2012).

    [37] C LIAO, Y ZUO, Z WEI et al. Russ. Electrochemical performance of metal-organic framework synthesized by a solvothermal method for supercapacitors. J. Electrochem, 49, 983-986(2013).

    [38] J XU, Y CHAO, Y XUE et al. Facile synthesis of novel metal-organic nickel hydroxide nanorods for high performance supercapacitor. Electrochim. Acta, 211, 595-602(2016).

    [39] J YANG, P XIONG, C ZHENG et al. Metal-organic frameworks: a new promising class of material for high performances supercapacitor electrode. J. Mater. Chem. A, 2, 16640-16644(2014).

    [40] L KANG, X SUN S, B KONG L et al. Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors. Chinese Chem. Lett, 25, 957-961(2014).

    [41] C QU, Y JIAO, B ZHAO et al. Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy, 26, 66-73(2016).

    [42] Y GONG, J LI, P JIANG et al. Novel metal(II) coordination polymers based on N,N'-bis-(4-pyridyl)phthalamide as supercapacitor electrode materials in an aqueous electrolyte. Dalton Trans, 42, 1603-1611(2013).

    [43] Y KANNANGARA Y, A RATHNAYAKE U, K SONG J. Redox active multi-layered Zn-pPDA MOFs as high-performance supercapacitor electrode material. Electrochim. Acta, 297, 145-154(2019).

    [44] M CHOI K, M JEONG H, H PARK J et al. Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano, 8, 7451-7457(2014).

    [45] J YANG, C ZHENG, P XIONG et al. Zn-doped Ni-MOF material with a high supercapacitive performance. J. Mater. Chem. A, 2, 19005-19010(2014).

    [46] R DÍAZ, G ORCAJO M, A BOTAS J et al. Co8-MOF-5 as electrode for supercapacitors. Mater. Lett, 68, 126-128(2012).

    [47] W GAO, D CHEN, H QUAN et al. Fabrication of hierarchical porous metal-organic framework electrode for aqueous asymmetric supercapacitor. ACS Sustain. Chem. Eng, 5, 4144-4153(2017).

    [48] A TALIN A, A CENTRONE, C FORD A et al. Tunable electrical conductivity in metal-organic framework thin-film devices. Science, 343, 66-69(2014).

    [49] Y CHUI S S, F LO S M, P CHARMANT J et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science, 283, 1148-1150(1999).

    [50] K WANG, Z WANG, W XIN et al. Flexible long-chain-linker constructed Ni-based metal-organic frameworks with 1D helical channel and their pseudo-capacitor behavior studies. J. Power Sources, 377, 44-51(2018).

    [51] R SALUNKHE R, V KANETI Y, J KIM et al. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Accounts Chem. Res, 49, 2796-2806(2016).

    [52] L WANG, X FENG, L REN et al. Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI. J. Am. Chem. Soc, 137, 4920-4923(2015).

    [53] J YANG, C GANG, D CHEN et al. Bimetal-organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage. J. Mater. Chem. A, 5, 23744-23752(2017).

    [54] Z WANG, C GAO, Y LIU et al. Electrochemical performance and transformation of Co-MOF/reduced graphene oxide composite. Mater. Lett, 193, 216(2017).

    [55] D BENNETT T, K CHEETHAM A. Amorphous metal-organic frameworks. Accounts Chem. Res, 47, 1555-1562(2014).

    [56] F YANG, W LI, J TANG B. Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application. Joarnal of Alloys & Compounds, 733, 8-14(2018).

    [57] N MCHUGH L, J MCPHERSON M, J MCCORMICK L et al. Hydrolytic stability in hemilabile metal-organic frameworks. Nat. Chem, 10, 1096-1102(2018).

    [58] Y LAN, Z LI, C YU et al. Application of zeolitic imidazolate framework in supercapacitor. New Chem. Mater, 45, 8-10(2017).

    [59] Z LI, W WANG, H CAO et al. Boron doped ZIF-67@graphene derived carbon electrocatalyst for highly efficient enzyme-free hydrogen peroxide biosensor. Adv. Mater. Tech, 2, 1700224(2017).

    [60] Z LI, Y JIANG, Z WANG et al. Nitrogen-rich core-shell structured particles consisting of carbonized zeolitic imidazolate frameworks and reduced graphene oxide for amperometric determination of hydrogen peroxide. Microchim. Acta, 185, 501(2018).

    [61] Z LI, Y LAN, H CAO et al. Carbon materials derived from chitosan/ cellulose cryogel-supported zeolite imidazole frameworks for potential supercapacitor application. Carbohyd. Polym, 175, 223-230(2017).

    [62] Z LI, H HE, H CAO et al. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B: Environ, 240, 112-121(2019).

    [63] R GAILLAC, P PULLUMBI, A BEYER K et al. Liquid metal-organic frameworks. Nat. Mater, 16, 1149-1154(2017).

    Zehui LI, Meijuan TAN, Yuanhao ZHENG, Yuyang LUO, Qiushi JING, Jingkun JIANG, Mingjie LI. Application of Conductive Metal Organic Frameworks in Supercapacitors[J]. Journal of Inorganic Materials, 2020, 35(7): 769
    Download Citation