• Journal of Semiconductors
  • Vol. 40, Issue 6, 061002 (2019)
Yue Li1、2, Ming Gong3、4, and Hualing Zeng1、2
Author Affiliations
  • 1International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
  • 2Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, Department of Physics, University of Science and Technology of China, Hefei 230026, China
  • 3CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 4Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.1088/1674-4926/40/6/061002 Cite this Article
    Yue Li, Ming Gong, Hualing Zeng. Atomically thin α-In2Se3: an emergent two-dimensional room temperature ferroelectric semiconductor[J]. Journal of Semiconductors, 2019, 40(6): 061002 Copy Citation Text show less
    References

    [1] C A P de Araujo, J D Cuchiaro, L D McMillan et al. Fatigue-free ferroelectric capacitors with platinum electrodes. Nature, 374, 627(1995).

    [2] T Choi, S Lee, Y J Choi et al. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 324, 63(2009).

    [3] H Lu, A Lipatov, S Ryu et al. Ferroelectric tunnel junctions with graphene electrodes. Nat Commun, 5, 5518(2014).

    [4] J F Scott, C A Paz de Araujo. Ferroelectric memories. Science, 246, 1400(1989).

    [5] M W Chu, I Szafraniak, R Scholz et al. Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nat Mater, 3, 87(2004).

    [6] M Stengel, D Vanderbilt, N A Spaldin. Enhancement of ferroelectricity at metal–oxide interfaces. Nat Mater, 8, 392(2009).

    [7] H Lu, X Liu, J D Burton et al. Enhancement of ferroelectric polarization stability by interface engineering. Adv Mater, 24, 1209(2012).

    [8] J Junquera, P Ghosez. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature, 422, 506(2003).

    [9] P Gao, Z Y Zhang, M Q Li et al. Possible absence of critical thickness and size effect in ultrathin perovskite ferroelectric films. Nat Commun, 8, 15549(2017).

    [10] X X Xi, Z F Wang, W W Zhao et al. Ising pairing in superconducting NbSe2 atomic layers. Nat Phys, 12, 139(2015).

    [11] X X Xi, L Zhao, Z F Wang et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nature Nanotech, 10, 765(2015).

    [12] H L Zeng, J F Dai, W Yao et al. Valley polarization in MoS2 monolayers by optical pumping. Nat Nanotech, 7, 490(2012).

    [13] Y Deng, Y Yu, Y Song et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 563, 94(2018).

    [14] A K Geim, K S Novoselov. The rise of graphene. Nat Mater, 6, 183(2007).

    [15] K F Mak, C G Lee, J Hone et al. Atomically thin MoS2 : a new direct-gap semiconductor. Phys Rev Lett, 105, 136805(2010).

    [16] H L Zeng, X D Cui. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chem Soc Rev, 44, 2629(2015).

    [17] A Belianinov, Q He, A Dziaugys et al. CuInP2S6 room temperature layered ferroelectric. Nano Lett, 15, 3808(2015).

    [18] F C Liu, L You, K L Seyler et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat Commun, 7, 12357(2016).

    [19] K Chang, J W Liu, H C Lin et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 353, 274(2016).

    [20] W J Ding, J B Zhu, Z Wang et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2–VI3 van der Waals materials. Nat Commun, 8, 14956(2017).

    [21] Y Zhou, D Wu, Y H Zhu et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett, 17, 5508(2017).

    [22] C J Cui, W J Hu, X X Yan et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett, 18, 1253(2018).

    [23] S M Poh, S J R Tan, H Wang et al. Molecular-beam epitaxy of two-dimensional In2Se3 and its giant electroresistance switching in ferroresistive memory junction. Nano Lett, 18, 6340(2018).

    [24] S Y Wan, Y Li, W Li et al. Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers. Nanoscale, 10, 14885(2018).

    [25] J Xiao, H Zhu, Y Wang et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys Rev Lett, 120, 227601(2018).

    [26] F Xue, W Hu, K C Lee et al. Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit. Adv Funct Mater, 0, 1803738(2018).

    [27] F Xue, J Zhang, W Hu et al. Multidirection piezoelectricity in mono- and multilayered hexagonal α-In2Se3. ACS Nano, 12, 4976(2018).

    [28] C Zheng, L Yu, L Zhu et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci Adv, 4, eaar7720(2018).

    [29] S Y Wan, Y Li, W Li et al. Nonvolatile ferroelectric memory effect in ultrathin α-In2Se3. Adv Funct Mater, 29, 1808606(2018).

    [30]

    [31] X Tao, Y Gu. Crystalline–crystalline phase transformation in two-dimensional In2Se3 thin layers. Nano Lett, 13, 3501(2013).

    [32] D Wu, A J Pak, Y N Liu et al. Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes. Nano Lett, 15, 8136(2015).

    [33] J D Zhou, Q S Zeng, D H Lv et al. Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Lett, 15, 6400(2015).

    [34] R B Jacobs-Gedrim, M Shanmugam, N Jain et al. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano, 8, 514(2014).

    [35] B Nilanthy, R S Christopher, F S Emily et al. Quantum confinement and photoresponsivity of β -In2Se3 nanosheets grown by physical vapour transport. 2D Mater, 3, 025030(2016).

    [36] M S Choi, B K Cheong, C H Ra et al. Electrically driven reversible phase changes in layered In2Se3 crystalline film. Adv Mater, 29, 1703568(2017).

    [37] R Lewandowska, R Bacewicz, J Filipowicz et al. Raman scattering in α-In2Se3 crystals. Mater Res Bull, 36, 2577(2001).

    [38] L Debbichi, O Eriksson, S Lebègue. Two-dimensional indium selenides compounds: an ab initio study. J Phys Chem Lett, 6, 3098(2015).

    [39] S Zhou, X Tao, Y Gu. Thickness-dependent thermal conductivity of suspended two-dimensional single-crystal In2Se3 layers grown by chemical vapor deposition. J Phys Chem C, 120, 4753(2016).

    [40] T Eisuke, O Kojiro, I Hiroshi. Low voltage operation of nonvolatile metal–ferroelectric–metal–insulator–semiconductor (MFMIS) field-effect-transistors (FETs) using Pt/SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structures. Jpn J Appl Phys, 40, 2917(2001).

    [41] T Eisuke, F Gen, I Hiroshi. Electrical properties of metal–ferroelectric–insulator–semiconductor (MFIS) and metal–ferroelectric–metal–insulator–semiconductor (MFMIS)-FETs using ferroelectric SrBi2Ta2O9 film and SrTa2O6/SiON buffer layer. Jpn J Appl Phys, 39, 2125(2000).

    Yue Li, Ming Gong, Hualing Zeng. Atomically thin α-In2Se3: an emergent two-dimensional room temperature ferroelectric semiconductor[J]. Journal of Semiconductors, 2019, 40(6): 061002
    Download Citation