• Photonics Research
  • Vol. 9, Issue 9, 1699 (2021)
Zhe Zhang1, Leona Nest1、2, Suo Wang1, Si-Yi Wang1, and Ren-Min Ma1、3、4、*
Author Affiliations
  • 1State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
  • 2Department of Physics, Free University Berlin, Berlin 14195, Germany
  • 3Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
  • 4Yangtze Delta Institute of Optoelectronics, Peking University, Nantong 226010, China
  • show less
    DOI: 10.1364/PRJ.431612 Cite this Article Set citation alerts
    Zhe Zhang, Leona Nest, Suo Wang, Si-Yi Wang, Ren-Min Ma. Lasing-enhanced surface plasmon resonance spectroscopy and sensing[J]. Photonics Research, 2021, 9(9): 1699 Copy Citation Text show less
    References

    [1] S. A. Maier. Plasmonics: Fundamentals and Applications(2007).

    [2] C. Nylander, B. Liedberg, T. Lind. Gas detection by means of surface plasmon resonance. Sens. Actuators, 3, 79-88(1982).

    [3] B. Liedberg, C. Nylander, I. Lunström. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators, 4, 299-304(1983).

    [4] J. Homola, J. Dostálek. Surface Plasmon Resonance Based Sensors(2006).

    [5] J. Homola, S. S. Yee, G. Gauglitz. Surface plasmon resonance sensors: review. Sens. Actuators B, 54, 3-15(1999).

    [6] J. Zhou, Q. Qi, C. Wang, Y. Qian, G. Liu, Y. Wang, L. Fu. Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosens. Bioelectron., 142, 111449(2019).

    [7] M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo. Nanostructured plasmonic sensors. Chem. Rev., 108, 494-521(2008).

    [8] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne. Biosensing with plasmonic nanosensors. Nat. Mater., 7, 442-453(2008).

    [9] A. J. Haes, R. P. Van Duyne. A unified view of propagating and localized surface plasmon resonance biosensors. Anal. Bioanal. Chem., 379, 920-930(2004).

    [10] M. I. Stockman. Nanoplasmonic sensing and detection. Science, 348, 287-288(2015).

    [11] G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, A. Chilkoti. Rational selection of gold nanorod geometry for label-free plasmonic biosensors. ACS Nano, 3, 795-806(2009).

    [12] E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, X. Zhang. Split ring resonator sensors for infrared detection of single molecular monolayers. Appl. Phys. Lett., 95, 043113(2009).

    [13] G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol., 4, 669-673(2009).

    [14] A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats. Plasmonic nanorod metamaterials for biosensing. Nat. Mater., 8, 867-871(2009).

    [15] J.-F. Li, Y.-F. Huang, Y. Ding, Z.-L. Yang, S.-B. Li, X.-S. Zhou, F.-R. Fan, W. Zhang, Z.-Y. Zhou, D.-Y. Wu, B. Ren, Z.-L. Wang, Z.-Q. Tian. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 464, 392-395(2010).

    [16] A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, H. Altug. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett., 10, 4962-4969(2010).

    [17] A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, H. Altug. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl. Acad. Sci. USA, 108, 11784-11789(2011).

    [18] N. Liu, M. L. Tang, M. Hentschel, H. Giessen, A. P. Alivisatos. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater., 10, 631-636(2011).

    [19] A. G. Brolo. Plasmonics for future biosensors. Nat. Photonics, 6, 709-713(2012).

    [20] V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, S. Arnold. Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett., 13, 3347-3351(2013).

    [21] N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, N. Liu. DNA-assembled bimetallic plasmonic nanosensors. Light Sci. Appl., 3, e226(2014).

    [22] K. M. Mayer, J. H. Hafner. Localized surface plasmon resonance sensors. Chem. Rev., 111, 3828-3857(2011).

    [23] R.-M. Ma, S. Ota, Y. Li, S. Yang, X. Zhang. Explosives detection in a lasing plasmon nanocavity. Nat. Nanotechnol., 9, 600-604(2014).

    [24] X.-Y. Wang, Y.-L. Wang, S. Wang, B. Li, X.-W. Zhang, L. Dai, R.-M. Ma. Lasing enhanced surface plasmon resonance sensing. Nanophotonics, 6, 472-478(2017).

    [25] A. Shalabney, I. Abdulhalim. Sensitivity enhancement methods for surface plasmon sensors. Laser Photonics Rev., 5, 571-606(2011).

    [26] E. T. Arakawa, M. W. Williams, R. N. Hamm, R. H. Ritchie. Effect of damping on surface plasmon dispersion. Phys. Rev. Lett., 31, 1127-1129(1973).

    [27] L. Zhang, D. Uttamchandani. Optical chemical sensing employing surface plasmon resonance. Electron. Lett., 24, 1469-1470(1988).

    [28] J. M. Brockman, B. P. Nelson, R. M. Corn. Surface plasmon resonance imaging measurements of ultrathin organic films. Annu. Rev. Phys. Chem., 51, 41-63(2000).

    [29] A. A. Kruchinin, Y. G. Vlasov. Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosensor. Sens. Actuators B, 30, 77-80(1996).

    [30] P. Berini. Figures of merit for surface plasmon waveguides. Opt. Express, 14, 13030-13042(2006).

    [31] M. A. Otte, B. Sepúlveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, L. M. Lechuga. Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing. ACS Nano, 4, 349-357(2010).

    [32] S. P. Ng, Y. Y. Yip, C. M. L. Wu. Biosensing with gain-assisted surface plasmon-polariton amplifier: a computational investigation. Sens. Actuators B, 210, 36-45(2015).

    [33] M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, K. Reynolds. Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. Opt. Express, 16, 1385-1392(2008).

    [34] I. Avrutsky. Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain. Phys. Rev. B, 70, 155416(2004).

    [35] M. P. Nezhad, K. Tetz, Y. Fainman. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. Opt. Express, 12, 4072-4079(2004).

    [36] A. A. Govyadinov, V. A. Podolskiy. Gain-assisted slow to superluminal group velocity manipulation in nanowaveguides. Phys. Rev. Lett., 97, 223902(2006).

    [37] J. Seidel, S. Grafström, L. Eng. Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Phys. Rev. Lett., 94, 177401(2005).

    [38] M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, V. A. Podolskiy. Stimulated emission of surface plasmon polaritons. Phys. Rev. Lett., 101, 226806(2008).

    [39] E. Purcell. Spontaneous emission probabilities at radio frequencies. Phys. Rev., 69, 681(1946).

    [40] D. J. Bergman, M. I. Stockman. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett., 90, 027402(2003).

    [41] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner. Demonstration of a spaser-based nanolaser. Nature, 460, 1110-1112(2009).

    [42] R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang. Plasmon lasers at deep subwavelength scale. Nature, 461, 629-632(2009).

    [43] M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Notzel, C.-Z. Ning, M. K. Smit. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express, 17, 11107-11112(2009).

    [44] P. Berini, I. De Leon. Surface plasmon–polariton amplifiers and lasers. Nat. Photonics, 6, 16-24(2012).

    [45] R.-M. Ma, R. F. Oulton, V. J. Sorger, X. Zhang. Plasmon lasers: coherent light source at molecular scales. Laser Photonics Rev., 7, 1-21(2013).

    [46] M. T. Hill, M. C. Gather. Advances in small lasers. Nat. Photonics, 8, 908-918(2014).

    [47] S. Gwo, C. K. Shih. Semiconductor plasmonic nanolasers: current status and perspectives. Rep. Prog. Phys., 79, 086501(2016).

    [48] D. Wang, W. Wang, M. P. Knudson, G. C. Schatz, T. W. Odom. Structural engineering in plasmon nanolasers. Chem. Rev., 118, 2865-2881(2018).

    [49] X.-W. Liu, P.-F. Xu, Y.-P. Wu, Z.-Y. Yang, C. Meng, W.-S. Yang, J.-B. Li, D.-L. Wang, X. Liu, Q. Yang. Control, optimization and measurement of parameters of semiconductor nanowires lasers. Nano Energy, 14, 340-354(2015).

    [50] Y. Liang, C. Li, Y.-Z. Huang, Q. Zhang. Plasmonic nanolasers in on-chip light sources: prospects and challenges. ACS Nano, 14, 14375-14390(2020).

    [51] M. I. Stockman. “Brief history of spaser from conception to the future. Adv. Photonics, 2, 054002(2020).

    [52] K. Ding, C.-Z. Ning. Metallic subwavelength-cavity semiconductor nanolasers. Light Sci. Appl., 1, e20(2012).

    [53] R. F. Oulton. Surface plasmon lasers: sources of nanoscopic light. Mater. Today, 15, 26-34(2012).

    [54] Y. Yin, T. Qiu, J.-Q. Li, P. K. Chu. Plasmonic nano-lasers. Nano Energy, 1, 25-41(2012).

    [55] Z. Wang, X. Meng, A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Nanolasers enabled by metallic nanoparticles: from spasers to random lasers. Laser Photonics Rev., 11, 1700212(2017).

    [56] A. Yang, D. Wang, W. Wang, T. W. Odom. Coherent light sources at the nanoscale. Annu. Rev. Phys. Chem., 68, 83-99(2017).

    [57] M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton III, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, M. F. Kling. Roadmap on plasmonics. J. Opt., 20, 043001(2018).

    [58] M. T. Hill. Electrically pumped metallic and plasmonic nanolasers. Chin. Phys. B, 27, 114210(2018).

    [59] Y.-H. Chou, C.-J. Chang, T.-R. Lin, T.-C. Lu. Surface plasmon polariton nanolasers: coherent light sources for new applications. Chin. Phys. B, 27, 114208(2018).

    [60] R.-M. Ma, R. F. Oulton. Applications of nanolasers. Nat. Nanotechnol., 14, 12-22(2019).

    [61] C.-Z. Ning. Semiconductor nanolasers and the size-energy-efficiency challenge: a review. Adv. Photonics, 1, 014002(2019).

    [62] S. I. Azzam, A. V. Kildishev, R.-M. Ma, C.-Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J.-L. Xu, X. Zhang. Ten years of spasers and plasmonic nanolasers. Light Sci. Appl., 9, 90(2020).

    [63] S. S. Deka, S. Jiang, S. H. Pan, Y. Fainman. Nanolaser arrays: toward application-driven dense integration. Nanophotonics, 10, 149-169(2021).

    [64] H. Wu, Y. Gao, P. Xu, X. Guo, P. Wang, D. Dai, L. Tong. Plasmonic nanolasers: Pursuing extreme lasing conditions on nanoscale. Adv. Opt. Mater., 7, 1900334(2019).

    [65] P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379(1972).

    [66] K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, D. J. Norris. Plasmonic films can easily be better: rules and recipes. ACS Photonics, 2, 326-333(2015).

    [67] C.-W. Cheng, Y.-J. Liao, C.-Y. Liu, B.-H. Wu, S. S. Raja, C.-Y. Wang, X. Li, C.-K. Shih, L.-J. Chen, S. Gwo. Epitaxial aluminum-on-sapphire films as a plasmonic material platform for ultraviolet and full visible spectral regions. ACS Photonics, 5, 2624-2630(2018).

    [68] Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alu, C.-K. Shih, X. Li. Intrinsic optical properties and enhanced plasmonic response of epitaxial silver. Adv. Mater., 26, 6106-6110(2014).

    [69] G. V. Naik, J. Kim, A. Boltasseva. Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express, 1, 1090-1099(2011).

    [70] G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, A. Boltasseva. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express, 2, 478-489(2012).

    [71] S. Wang, B. Li, X.-Y. Wang, H.-Z. Chen, Y.-L. Wang, X.-W. Zhang, L. Dai, R.-M. Ma. High-yield plasmonic nanolasers with superior stability for sensing in aqueous solution. ACS Photonics, 4, 1355-1360(2017).

    [72] P.-J. Cheng, Z.-T. Huang, J.-H. Li, B.-T. Chou, Y.-H. Chou, W.-C. Lo, K.-P. Chen, T.-C. Lu, T.-R. Lin. High-performance plasmonic nanolasers with a nanotrench defect cavity for sensing applications. ACS Photonics, 5, 2638-2644(2018).

    [73] K. L. Shaklee, R. E. Nahory, R. F. Leheny. Optical gain in semiconductors. J. Lumin., 7, 284-309(1973).

    [74] Y.-J. Lu, C.-Y. Wang, J. Kim, H.-Y. Chen, M.-Y. Lu, Y.-C. Chen, W.-H. Chang, L.-J. Chen, M.-I. Stockman, C. K. Shih, S. Gwo. All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. Nano Lett., 14, 4381-4388(2014).

    [75] Y. Zhang, J. Wu, M. Aagesen, H. Liu. III–V nanowires and nanowire optoelectronic devices. J. Phys. D, 48, 463001(2015).

    [76] V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi. Optical gain and stimulated emission in nanocrystal quantum dots. Science, 290, 314-317(2000).

    [77] S. D. Stranks, H. J. Snaith. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol., 10, 391-402(2015).

    [78] B. R. Sutherland, E. H. Sargent. Perovskite photonic sources. Nat. Photonics, 10, 295-302(2016).

    [79] S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, S. G. Mhaisalkar. Perovskite materials for light-emitting diodes and lasers. Adv. Mater., 28, 6804-6834(2016).

    [80] B. R. Sutherland, S. Hoogland, M. M. Adachi, P. Kanjanaboos, C. T. O. Wong, J. J. McDowell, J. Xu, O. Voznyy, Z. Ning, A. J. Houtepen, E. H. Sargen. Perovskite thin films via atomic layer deposition. Adv. Mater., 27, 53-58(2015).

    [81] Q. Zhang, R. Su, W.-N. Du, X.-F. Liu, L.-Y. Zhao, S. T. Ha, Q.-H. Xiong. Advances in small perovskite based lasers. Small Methods, 1, 1700163(2017).

    [82] R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, X. Zhang. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat. Mater., 10, 110-113(2011).

    [83] W.-H. Guo, Y.-Z. Huang, Q.-Y. Lu, L.-J. Yu. Modes in square resonators. IEEE J. Quantum Electron., 39, 1563-1566(2003).

    [84] Y.-Z. Huang, K.-J. Che, Y.-D. Yang, S.-J. Wang, Y. Du, Z.-C. Fan. Directional emission InP/GaInAsP square-resonator microlasers. Opt. Lett., 33, 2170-2172(2008).

    [85] W. Zhu, T. Xu, H. Wang, C. Zhang, P. B. Deotare, A. Agrawal, H. J. Lezec. Surface plasmon polariton laser based on a metallic trench Fabry-Perot resonator. Sci. Adv., 3, e1700909(2017).

    [86] V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, X. Zhang. Plasmonic Fabry-Pérot nanocavity. Nano Lett., 9, 3489-3493(2009).

    [87] S. J. P. Kress, F. V. Antolinez, P. Richner, S. V. Jayanti, D. K. Kim, F. Prins, A. Riedinger, M. P. C. Fischer, S. Meyer, K. M. McPeak, D. Poulikakos, D. J. Norris. Wedge waveguides and resonators for quantum plasmonics. Nano Lett., 15, 6267-6275(2015).

    [88] A. Hosseini, Y. Massoud. A low-loss metal-insulator-metal plasmonic Bragg reflector. Opt. Express, 14, 11318-11323(2006).

    [89] J.-Q. Liu, L.-L. Wang, M.-D. He, W.-Q. Huang, D. Wang, B.-S. Zou, S. Wen. A wide bandgap plasmonic Bragg reflector. Opt. Express, 16, 4888-4894(2008).

    [90] Y.-H. Hsieh, B.-W. Hsu, K.-N. Peng, K.-W. Lee, C. W. Chu, S.-W. Chang, H.-W. Lin, T.-J. Yen, Y.-J. Lu. Perovskite quantum dot lasing in a gap-plasmon nanocavity with ultralow threshold. ACS Nano, 14, 11670-11676(2020).

    [91] E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, V. P. Zharov. Spaser as a biological probe. Nat. Commun., 8, 15528(2017).

    [92] S. Wang, X.-Y. Wang, B. Li, H.-Z. Chen, Y.-L. Wang, L. Dai, R. F. Oulton, R.-M. Ma. Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit. Nat. Commun., 8, 1889(2017).

    [93] H.-Z. Chen, J.-Q. Hu, S. Wang, B. Li, X.-Y. Wang, Y.-L. Wang, L. Dai, R.-M. Ma. Imaging the dark emission of spasers. Sci. Adv., 3, e1601962(2017).

    [94] H.-Z. Chen, S. Wang, R.-M. Ma. Characterization of plasmonic nanolasers in spatial, momentum, and frequency spaces. IEEE J. Quantum Electron., 54, 7200307(2018).

    [95] Y. Wang, J. Yu, Y.-F. Mao, J. Chen, S. Wang, H.-Z. Chen, Y. Zhang, S.-Y. Wang, X.-J. Chen, T. Li, L. Zhou, R.-M. Ma, S.-N. Zhu, W.-S. Cai, J. Zhu. Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature, 581, 401-405(2020).

    [96] R. Weissleder. A clearer vision for in vivo imaging. Nat. Biotechnol., 19, 316-317(2001).

    [97] J. Sun, T. Wang, Z. Jafari, F. Gao, X. Lin, H. Chen, G. Wang, I. De Leon. High-Q plasmonic crystal laser for ultra-sensitive biomolecule detection. IEEE J. Sel. Top. Quantum. Electron., 27, 4601407(2021).

    [98] P. Melentiev, A. Kalmykov, A. Gritchenko, A. Afanasiev, V. Balykin, A. S. Baburin, E. Ryzhova, I. Filippov, I. A. Rodionov, I. A. Nechepurenko, A. V. Dorofeenko, I. Ryzhikov, A. P. Vinogradov, A. A. Zyablovsky, E. S. Andrianov, A. A. Lisyansky. Plasmonic nanolaser for intracavity spectroscopy and sensorics. Appl. Phys. Lett., 111, 213104(2017).

    [99] U. Eletxigerra, J. Martinez-Perdiguero, R. Barderas, J. M. Pingarrón, S. Campuzano, S. Merino. Surface plasmon resonance immunosensor for ErbB2 breast cancer biomarker determination in human serum and raw cancer cell lysates. Anal. Chim. Acta, 905, 156-162(2016).

    [100] S. K. Vashist, E. M. Schneider, J. H. T. Luong. Surface plasmon resonance-based immunoassay for human fetuin A. Analyst, 139, 2237-2242(2014).

    [101] R. Wang, A. Lajevardi-Khosh, S. Choi, J. Chae. Regenerative surface plasmon resonance (SPR) biosensor: real-time measurement of fibrinogen in undiluted human serum using the competitive adsorption of proteins. Biosens. Bioelectron., 28, 304-307(2011).

    [102] Y. Uludag, I. E. Tothill. Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal microbalance sensors with nanoparticle signal amplification. Anal. Chem., 84, 5898-5904(2012).

    [103] K. Pimková, M. Bocková, K. Hegnerová, J. Suttnar, J. Čermák, J. Homola, J. E. Dyr. Surface plasmon resonance biosensor for the detection of VEGFR-1—a protein marker of myelodysplastic syndromes. Anal. Bioanal. Chem., 402, 381-387(2012).

    [104] P. Trouvé, M. L. Calvez, S. Moisan, S. L. Hir, F. Huguet, N. Benz, M. Kerbiriou, C. Férec. Rapid detection of the mature form of cystic fibrosis transmembrane regulator by surface plasmon resonance. Anal. Methods, 7, 226-236(2015).

    [105] T. M. Battaglia, J.-F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, K. S. Booksh. Quantification of cytokines involved in wound healing using surface plasmon resonance. Anal. Chem., 77, 7016-7023(2005).

    [106] J. F. Masson, L. Obando, S. Beaudoin, K. Booksh. Sensitive and real-time fiber-optic-based surface plasmon resonance sensors for myoglobin and cardiac troponin I. Talanta, 62, 865-870(2004).

    [107] J. F. Masson, T. M. Battaglia, P. Khairallah, S. Beaudoin, K. S. Booksh. Quantitative measurement of cardiac markers in undiluted serum. Anal. Chem., 79, 612-619(2007).

    [108] B. G. Jongerius-Gortemaker, R. L. Goverde, F. van Knapen, A. A. Bergwerff. Surface plasmon resonance (BIACORE) detection of serum antibodies against Salmonella enteritidis and Salmonella typhimurium. J. Immunol. Methods, 266, 33-44(2002).

    [109] J. Treviño, A. Calle, J. M. Rodríguez-Frade, M. Mellado, L. M. Lechuga. Single-and multi-analyte determination of gonadotropic hormones in urine by surface plasmon resonance immunoassay. Anal. Chim. Acta, 647, 202-209(2009).

    [110] J. Treviño, A. Calle, J. M. Rodríguez-Frade, M. Mellado, L. M. Lechuga. Surface plasmon resonance immunoassay analysis of pituitary hormones in urine and serum samples. Clin. Chim. Acta, 403, 56-62(2009).

    [111] S. Mariani, S. Scarano, J. Spadavecchia, M. Minunni. A reusable optical biosensor for the ultrasensitive and selective detection of unamplified human genomic DNA with gold nanostars. Biosens. Bioelectron., 74, 981-988(2015).

    [112] L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, C. D. Keating. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J. Am. Chem. Soc., 122, 9071-9077(2000).

    [113] H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, M. L. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva. Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor. Biosens. Bioelectron., 70, 226-231(2015).

    [114] B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, R. M. Corn. Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal. Chem., 73, 1-7(2001).

    [115] S. Fang, H. J. Lee, A. W. Wark, R. M. Corn. Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J. Am. Chem. Soc., 128, 14044-14046(2006).

    [116] J.-B. Li, P.-H. Lei, S.-J. Ding, Y. Zhang, J.-R. Yang, Q. Cheng, Y.-R. Yan. An enzyme-free surface plasmon resonance biosensor for real-time detecting microRNA based on allosteric effect of mismatched catalytic hairpin assembly. Biosens. Bioelectron., 77, 435-441(2016).

    [117] X.-J. Ding, Y.-R. Yan, S.-Q. Li, Y. Zhang, W. Cheng, Q.-J. Cheng, S.-J. Ding. Surface plasmon resonance biosensor for highly sensitive detection of microRNA based on DNA super-sandwich assemblies and streptavidin signal amplification. Anal. Chim. Acta, 874, 59-65(2015).

    [118] Q. Wang, R.-J. Liu, X.-H. Yang, K.-M. Wang, J.-Q. Zhu, L.-L. He, Q. Li. Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich. Sens. Actuators B, 223, 613-620(2016).

    [119] Z.-S. Gao, J.-H. Wang, P. Song, B. Kang, J.-J. Xu, H.-Y. Chen. Spaser nanoparticles for ultranarrow bandwidth STED super-resolution imaging. Adv. Mater., 32, 1907233(2020).

    [120] S. W. Hell. Microscopy and its focal switch. Nat. Methods, 6, 24-32(2009).

    [121] N. Martino, S. J. J. Kwok, A. C. Liapis, S. Forward, H. Jang, H.-M. Kim, S. J. Wu, J. Wu, P. H. Dannenberg, Y.-H. Lee, S.-J. Jang, S.-H. Yun. Wavelength-encoded laser particles for massively multiplexed cell tagging. Nat. Photonics, 13, 720-727(2019).

    [122] S.-J. Tang, P. H. Dannenberg, A. C. Liapis, N. Martino, Y. Zhuo, Y.-F. Xiao, S.-H. Yun. Laser particles with omnidirectional emission for cell tracking. Light Sci. Appl., 10, 23(2021).

    Zhe Zhang, Leona Nest, Suo Wang, Si-Yi Wang, Ren-Min Ma. Lasing-enhanced surface plasmon resonance spectroscopy and sensing[J]. Photonics Research, 2021, 9(9): 1699
    Download Citation