• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 2, 377 (2022)
Shi-Yu FANG1, Zhen-Yu LIU1, Jia-Jie JIN1, Ji-Chao SHI1, Yong-Zheng FANG1、**, Chang-Hong SUN2, Zhen-Hua YE2, and Yu-Feng LIU1、2、*
Author Affiliations
  • 1School of Materials Science and Engineering,Shanghai Institute of Technology,Shanghai 201418,China
  • 2Key Laboratory of Infrared Imaging Materials and Devices,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.02.001 Cite this Article
    Shi-Yu FANG, Zhen-Yu LIU, Jia-Jie JIN, Ji-Chao SHI, Yong-Zheng FANG, Chang-Hong SUN, Zhen-Hua YE, Yu-Feng LIU. The band gap regulation of HgxCd1-xTe quantum dots by ion exchange and their near-infrared self-absorption characteristics[J]. Journal of Infrared and Millimeter Waves, 2022, 41(2): 377 Copy Citation Text show less
    References

    [1] A Rogalski. HgCdTe infrared detector material: history, status and outlook. Reports on Progress in Physics, 68, 2267(2005).

    [2] A Rogalski, K Chrzanowski. Infrared devices and techniques. Opto-electronics Review, 10, 111-136(2002).

    [3] M Vallone, M Goano, A Tibaldi et al. Challenges in multiphysics modeling of dual-band HgCdTe infrared detectors. Applied Optics, 59, 5656-5663(2020).

    [4] J Antoszewski, N D Akhavan, G Umana-Membreno et al. Recent developments in mercury cadmium telluride IR detector technology. ECS Transactions, 69, 61(2015).

    [5] J Wenisch, H Bitterlich, M Bruder et al. Large-format and long-wavelength infrared mercury cadmium telluride detectors. Journal of electronic materials, 42, 3186-3190(2013).

    [6] P Capper, J Garland, S Kasap et al. Mercury cadmium telluride: growth, properties and applications(2010).

    [7] L Hu, Q Zhao, S Huang et al. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nature Communications, 12, 1-9(2021).

    [8] G Konstantatos, E H Sargent. Colloidal quantum dot photodetectors. Infrared Physics & Technology, 54, 278-282(2011).

    [9] S F Tang, S Y Lin, S C Lee. Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector. Applied Physics Letters, 78, 2428-2430(2001).

    [10] H Zhang, P Guyot-Sionnest. Shape-controlled HgTe colloidal quantum dots and reduced spin-orbit splitting in the tetrahedral Shape. The Journal of Physical Chemistry Letters, 11, 6860-6866(2020).

    [11] A M Saeboe, A Y Nikiforov, R Toufanian et al. Extending the near-infrared emission range of indium phosphide quantum dots for multiplexed in vivo imaging. Nano Letters, 21, 3271-3279(2021).

    [12] S A Mcdonald, G Konstantatos, S Zhang et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature materials, 4, 138-142(2005).

    [13] Y Du, B Xu, T Fu et al. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. Journal of the American Chemical Society, 132, 1470-1471(2010).

    [14] Q Guo, S J Kim, M Kar et al. Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells. Nano letters, 8, 2982-2987(2008).

    [15] R VOGEL, P HOYER, H WELLER. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. The Journal of Physical Chemistry, 98, 3183-3188(2002).

    [16] W W Yu, Y A Wang, X Peng. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals. Chemistry of Materials, 15, 4300-4308(2003).

    [17] H Mandal, M Chakali, M Venkatesan et al. Hot electron transfer from CdTe quantum dot (QD) to porphyrin and ultrafast electron transfer from porphyrin to CdTe QD in CdTe QD-Tetrakis (4-carboxyphenyl) porphyrin nanocomposites. The Journal of Physical Chemistry C, 125, 4750-4763(2021).

    [18] A Mews, A V Kadavanich, U Banin et al. Structural and spectroscopic investigations of CdS/HgS/CdS quantum-dot quantum wells. Physical Review B, 53, R13242(1996).

    [19] D Choi, B Yoon, D K Kim et al. Major electronic transition shift from bandgap to localized surface plasmon resonance in CdxHg1-xSe alloy nanocrystals. Chemistry of Materials, 29, 8548-8554(2017).

    [20] S Sarkar, P Le, J Geng et al. Short-wave infrared quantum dots with compact sizes as molecular probes for fluorescence microscopy. Journal of the American Chemical Society, 142, 3449-3462(2020).

    [21] A M Smith, S Nie. Bright and compact alloyed quantum dots with broadly tunable near-infrared absorption and fluorescence spectra through mercury cation exchange. Journal of the American Chemical Society, 133, 24-26(2011).

    [22] S F Wuister, I Swart, F Van Driel et al. Highly luminescent water-soluble CdTe quantum dots. Nano Letters, 3, 503-507(2003).

    Shi-Yu FANG, Zhen-Yu LIU, Jia-Jie JIN, Ji-Chao SHI, Yong-Zheng FANG, Chang-Hong SUN, Zhen-Hua YE, Yu-Feng LIU. The band gap regulation of HgxCd1-xTe quantum dots by ion exchange and their near-infrared self-absorption characteristics[J]. Journal of Infrared and Millimeter Waves, 2022, 41(2): 377
    Download Citation