• Opto-Electronic Advances
  • Vol. 3, Issue 3, 190022-1 (2020)
Lei Zhang1、*, Jing Pan1, Zhang Zhang1, Hao Wu1, Ni Yao1, Dawei Cai1, Yingxin Xu1, Jin Zhang1, Guofei Sun2, Liqiang Wang1, Weidong Geng2, Wenguang Jin3, Wei Fang1, Dawei Di1、4, and Limin Tong1
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 2College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
  • 3College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
  • 4Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
  • show less
    DOI: 10.29026/oea.2020.190022 Cite this Article
    Lei Zhang, Jing Pan, Zhang Zhang, Hao Wu, Ni Yao, Dawei Cai, Yingxin Xu, Jin Zhang, Guofei Sun, Liqiang Wang, Weidong Geng, Wenguang Jin, Wei Fang, Dawei Di, Limin Tong. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers[J]. Opto-Electronic Advances, 2020, 3(3): 190022-1 Copy Citation Text show less
    References

    [1] D H Kim, N S Lu, R Ma, Y S Kim, R H Kim et al. Epidermal electronics. Science, 333, 838-843(2011).

    [2] M L Hammock, A Chortos, B C K Tee, J B H Tok, Z N Bao. 25th anniversary article:the evolution of electronic skin (E-Skin):a brief history, design considerations, and recent progress. Adv Mater, 25, 5997-6038(2013).

    [3] S C B Mannsfeld, B C K Tee, R M Stoltenberg, C V H H Chen, S Barman et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater, 9, 859-864(2010).

    [4] N N Jason, M D Ho, W J Cheng. Resistive electronic skin. J Mater Chem C, 5, 5845-5866(2017).

    [5] X D Wang, J Zhou, J H Song, J Liu, N S Xu et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett, 6, 2768-2772(2006).

    [6] F R Fan, L Lin, G Zhu, W Z Wu, R Zhang et al. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett, 12, 3109-3114(2012).

    [7] D Kang, P V Pikhitsa, Y W Choi, C Lee, S S Shin et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature, 516, 222-226(2014).

    [8] D Yin, J Feng, R Ma, Y F Liu, Y L Zhang et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. Nat Commun, 7, 11573(2016).

    [9] A Miyamoto, S Lee, N F Cooray, S Lee, M Mori et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat Nanotechnol, 12, 907-913(2017).

    [10] K Takei, T Takahashi, J C Ho, H Ko, A G Gillies et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater, 9, 821-826(2010).

    [11] C Larson, B Peele, S Li, S Robinson, M Totaro et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science, 351, 1071-1074(2016).

    [12] Y Kim, A Chortos, W T Xu, Y X Liu, J Y Oh et al. A bioinspired flexible organic artificial afferent nerve. Science, 360, 998-1003(2018).

    [13] D A B Miller. Rationale and challenges for optical interconnects to electronic chips. Proc IEEE, 88, 728-749(2000).

    [14] B Lee. Review of the present status of optical fiber sensors. Opt Fiber Technol, 9, 57-79(2003).

    [15] L M Tong, R R Gattass, J B Ashcom, S L He, J Y Lou et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 426, 816-819(2003).

    [16] R Nagai, T Aoki. Ultra-low-loss tapered optical fibers with minimal lengths. Opt Express, 22, 28427-28436(2014).

    [17] G Brambilla, D N Payne. The ultimate strength of glass silica nanowires. Nano Lett, 9, 831-835(2019).

    [18] A Rising, J Johansson. Toward spinning artificial spider silk. Nat Chem Biol, 11, 309-315(2015).

    [19] M Daly, M Sergides, Chormaic S Nic. Optical trapping and manipulation of micrometer and submicrometer particles. Laser Photonics Rev, 9, 309-329(2015).

    [20] D D Sun, T Guo, Y Ran, Y Huang, B O Guan. In-situ DNA hybridization detection with a reflective microfiber grating biosensor. Biosens Bioelectron, 61, 541-546(2014).

    [21] T Liu, L L Liang, P Xiao, L P Sun, Y Y Huang et al. A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating. Biosens Bioelectron, 100, 155-160(2018).

    [22] M Sumetsky, R S Windeler, Y Dulashko, X Fan. Optical liquid ring resonator sensor. Opt Express, 15, 14376-14381(2007).

    [23] C Wang, W Jin, C R Liao, J Ma, W Jin et al. Highly birefringent suspended-core photonic microcells for refractive-index sensing. Appl Phys Lett, 105, 061105(2014).

    [24] H P Luo, Q Z Sun, X L Li, Z J Yan, Y P Li et al. Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer. Opt Lett, 40, 5042-5045(2015).

    [25] F X Gu, G Q Wu, H P Zeng. Hybrid photon-plasmon Mach-Zehnder interferometers for highly sensitive hydrogen sensing. Nanoscale, 7, 924-929(2015).

    [26] Y Wu, B C Yao, C B Yu, Y J Rao. Optical graphene gas sensors based on microfibers:a review. Sensors, 18, 941(2018).

    [27] Y Chen, S C Yan, X Zheng, F Xu, Y Q Lu. A miniature reflective micro-force sensor based on a microfiber coupler. Opt Express, 22, 2443-2450(2014).

    [28] R Yang, Y S Yu, C C Zhu, Y Xue, C Chen et al. PDMS-coated S-tapered fiber for highly sensitive measurements of transverse load and temperature. IEEE Sens J, 15, 3429-3435(2015).

    [29] L M Tong, J Y Lou, E Mazur. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Opt Express, 12, 1025-1035(2004).

    [30] X L Zhao, Q L Hua, R M Yu, Y Zhang, C F Pan. Flexible, stretchable and wearable multifunctional sensor array as artificial electronic skin for static and dynamic strain mapping. Adv Electron Mater, 1, 1500142(2015).

    [31] L Persano, C Dagdeviren, Y W Su, Y H Zhang, S Girardo et al. High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene). Nat Commun, 4, 1633(2013).

    [32] J Park, Y Lee, J Hong, M Ha, Y D Jung et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano, 8, 4689-4697(2014).

    [33] Y P Zang, F J Zhang, D Z Huang, X K Gao, C A Di et al. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat Commun, 6, 6269(2015).

    [34] J Zhou, Y D Gu, P Fei, W J Mai, Y F Gao et al. Flexible piezotronic strain sensor. Nano Lett, 8, 3035-3040(2008).

    [35] X W Wang, Y Gu, Z P Xiong, Z Cui, T Zhang. Silk‐molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater, 26, 1336-1342(2014).

    [36] S H Shin, S Ji, S Choi, K H Pyo, A B Wan et al. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges. Nat Commun, 8, 14950(2017).

    [37] W W Nichols. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens, 18, 3-10(2005).

    [38] E Fujiwara, Santos M F M dos, C K Suzuki. Flexible optical fiber bending transducer for application in glove-based sensors. IEEE Sens J, 14, 3631-3636(2014).

    [39] S Chen, Z Lou, D Chen, K Jiang, G Z Shen. Polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves. Adv Mater Technol, 1, 1600136(2016).

    Lei Zhang, Jing Pan, Zhang Zhang, Hao Wu, Ni Yao, Dawei Cai, Yingxin Xu, Jin Zhang, Guofei Sun, Liqiang Wang, Weidong Geng, Wenguang Jin, Wei Fang, Dawei Di, Limin Tong. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers[J]. Opto-Electronic Advances, 2020, 3(3): 190022-1
    Download Citation