• Journal of Innovative Optical Health Sciences
  • Vol. 7, Issue 2, 1350064 (2014)
Peter M. Andrews1, Hsing-Wen Wang2, Jeremiah Wierwille2, Wei Gong2、3, Jennifer Verbesey4, Matthew Cooper4, and Yu Chen2、*
Author Affiliations
  • 1Department of Biochemistry, Molecular and Cellular Biology Georgetown University Medical Center Washington, DC 20007, USA
  • 2Fischell Department of Bioengineering, University of Maryland College Park, MD 20742, USA
  • 3College of Photonic and Electric Engineering Fujian Normal University, Fuzhou, China
  • 4Medstar Georgetown Transplant Institute Georgetown University Medical Center Washington, DC 20007, USA
  • show less
    DOI: 10.1142/s1793545813500648 Cite this Article
    Peter M. Andrews, Hsing-Wen Wang, Jeremiah Wierwille, Wei Gong, Jennifer Verbesey, Matthew Cooper, Yu Chen. Optical coherence tomography of the living human kidney[J]. Journal of Innovative Optical Health Sciences, 2014, 7(2): 1350064 Copy Citation Text show less
    References

    [1] P. M. Andrews, B. S. Khirabadi, B. C. Bengs, "Using tandem scanning confocal microscopy to predict the status of donor kidneys," Nephron 91 (1), 148–155 (2002).

    [2] A. B. Maunsbach, "The influence of different fixatives and fixation methods on the ultrastructure of rat kidney proximal tubule cells. I. Comparison of different perfusion fixation methods and of glutaraldehyde, formaldehyde and osmium tetroxide fixatives," J. Ultrastruct Res. 15(3), 242–282 (1966).

    [3] K. Kalantarinia, J. T. Belcik, J. T. Patrie, K. Wei, "Real-time measurement of renal blood flow in healthy subjects using contrast-enhanced ultrasound," Am. J. Physiol. Renal Physiol. 297(4), F1129–F1134 (2009).

    [4] D. H. Kay, M. Mazonakis, C. Geddes, G. Baxter, "Ultrasonic microbubble contrast agents and the transplant kidney," Clin. Radiol. 64(11), 1081–1087 (2009).

    [5] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254 (5035), 1178–1181 (1991).

    [6] J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21(11), 1361–1367 (2003).

    [7] B.E. Bouma, S. H.Yun, B. J. Vakoc, M. J. Suter, G. J. Tearney, "Fourier-domain optical coherence tomography: Recent advances toward clinical utility," Curr. Opin. Biotechnol. 20(1), 111–118 (2009).

    [8] J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases, 2nd Edition, NJ Slack Inc. Thorofare. (2004).

    [9] I. K. Jang, B. Bouma, B. MacNeill, M. Takano, M. Shishkov, N. Iftima, G. J. Tearney, "In-vivo coronary plaque characteristics in patients with various clinical presentations using optical coherence tomography," Circulation 108(17), 373–373 (2003).

    [10] B. E. Bouma, G. J. Tearney, C. C. Compton, N. S. Nishioka, "High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography," Gastrointest. Endosc. 51, 467–474 (2000).

    [11] M. V. Sivak, Jr., K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, J. Willis, "High-resolution endoscopic imaging of the GI tract using optical coherence tomography," Gastrointest. Endosc. 51, 474–479 (2000).

    [12] X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, J. G. Fujimoto, "Optical coherence tomography: Advanced technology for the endoscopic imaging of Barrett's esophagus," Endoscopy 32(12), 921–930 (2000).

    [13] Y. Chen, A. D. Aguirre, P. L. Hsiung, S. Desai, P. R. Herz, M. Pedrosa, Q. Huang, M. Figueiredo, S. W. Huang, A. Koski, J. M. Schmitt, J. G. Fujimoto, H. Mashimo, "Ultrahigh resolution optical coherence tomography of Barrett's esophagus: Preliminary descriptive clinical study correlating images with histology," Endoscopy 39(7), 599–605 (2007).

    [14] A. V. D'Amico, M. Weinstein, X. Li, J. P. Richie, J. Fujimoto, "Optical coherence tomography as a method for identifying benign and malignant microscopic structures in the prostate gland," Urology 55(5), 783–787 (2000).

    [15] Z. Wang, C. S. Lee, W. C. Waltzer, J. Liu, H. Xie, Z. Yuan, Y. Pan, "In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography," J. Biomed. Opt. 12(3), 034009 (2007).

    [16] C. Pitris, A. Goodman, S. A. Boppart, J. J. Libus, J. G. Fujimoto, M. E. Brezinski, "High-resolution imaging of gynecologic neoplasms using optical coherence tomography," Obstet. Gynecol. 93(1), 135–139 (1999).

    [17] K. Barwari, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, J. J. de la Rosette, M. P. Laguna, "Differentiation between normal renal tissue and renal tumours using functional optical coherence tomography: A phase I in vivo human study," BJU Int. 110, E415–E420 (2012).

    [18] S. Yazdanfar, A. M. Rollins, J. A. Izatt, "Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography," Opt. Lett. 25(19), 1448–1450 (2000).

    [19] R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, T. Bajraszewski, "Realtime assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11(23), 3116– 3121 (2003).

    [20] B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11(25), 3490–3497 (2003).

    [21] Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, D. Huang, "Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography," Br. J. Ophthalmol. 93(5), 634–637 (2009).

    [22] L. An, R. K. Wang, "In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography," Opt. Express 16(15), 11438–11452 (2008).

    [23] Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, D. Huang, "In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography," J. Biomed. Opt. 12(4), 041215 (2007).

    [24] R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, R. A. Leitgeb, "Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography," J. Biomed. Opt. 12(4), 041213 (2007).

    [25] Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, J. S. Nelson, "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett. 22(14), 1119–1121 (1997).

    [26] Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25(2), 114–116 (2000).

    [27] J. Kehlet Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, A. J. Welch, "Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images," Dermatology 198(4), 355–361 (1999).

    [28] Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, A. Seiyama, "In vivo imaging of the rat cerebral microvessels with optical coherence tomography," Clin. Hemorheol. Microcirc. 31(1), 31–40 (2004).

    [29] Z. Luo, Z. Wang, Z. Yuan, C. Du, Y. Pan, "Optical coherence Doppler tomography quantifies laser speckle contrast imaging for blood flow imaging in the rat cerebral cortex," Opt. Lett. 33(10), 1156–1158 (2008).

    [30] V. X. Yang, S. J. Tang, M. L. Gordon, B. Qi, G. Gardiner, M. Cirocco, P. Kortan, G. B. Haber, G. Kandel, I. A. Vitkin, B. C. Wilson, N. E. Marcon, "Endoscopic Doppler optical coherence tomography in the human GI tract: Initial experience," Gastrointest. Endosc. 61(7), 879–890 (2005).

    [31] B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, B. E. Bouma, "Comprehensive esophageal microscopy by using optical frequencydomain imaging (with video)," Gastrointest. Endosc. 65(6), 898–905 (2007).

    [32] V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, A. Cable, OCT Imaging up to 760 kHz Axial Scan Rate using Single- Mode 1310 nm MEMS-Tunable VCSELs with > 100 nm Tuning Range, in Conf. Lasers and Electro- Optics: Applications and Technology, p. PDPB2. Optical Society of America: Baltimore, MD (2011).

    [33] S. Moon, D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Opt. Express 14(24), 11575– 11584 (2006).

    [34] Y. Chen, A. D. Aguirre, P. Hsiung, S. W. Huang, H. Mashimo, J. M. Schmitt, J. G. Fujimoto, "Effects of axial resolution improvement on optical coherence tomography (OCT) imaging of gastrointestinal tissues," Opt. Express 16, 2469–2485 (2008).

    [35] R. Hattori, Y. Ono, M. Kato, T. Komatsu, Y. Matsukawa, T. Yamamoto, "Direct visualization of cortical peritubular capillary of transplanted human kidney with reperfusion injury using a magnifying endoscopy," Transplantation 79(9), 1190–1194 (2005).

    [36] M. G. Snoeijs, H. Vink, N. Voesten, M. H. Christiaans, J. W. Daemen, A. G. Peppelenbosch, J. H. Tordoir, C. J. Peutz-Kootstra, W. A. Buurman, G. W. Schurink, L. W. van Heurn, "Acute ischemic injury to the renal microvasculature in human kidney transplantation," Am. J. Physiol. Renal Physiol. 299(5), F1134–F1140 (2010).

    [37] J. Verbesey, M. Cooper, P. Andrews, R. Derek, P. Moody, Y. Chen, "Using non-invasive, real-time imaging technology to assess the status of donor kidneys," Am. J. Transplantation 13(S5), 307 (2013).

    Peter M. Andrews, Hsing-Wen Wang, Jeremiah Wierwille, Wei Gong, Jennifer Verbesey, Matthew Cooper, Yu Chen. Optical coherence tomography of the living human kidney[J]. Journal of Innovative Optical Health Sciences, 2014, 7(2): 1350064
    Download Citation