• Advanced Photonics Nexus
  • Vol. 3, Issue 3, 036006 (2024)
Xiuye Liu1 and Jianhua Zeng1、2、3、*
Author Affiliations
  • 1Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Center for Attosecond Science and Technology, State Key Laboratory of Transient Optics and Photonics, Xi’an, China
  • 2University of Chinese Academy of Sciences, Beijing, China
  • 3Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, China
  • show less
    DOI: 10.1117/1.APN.3.3.036006 Cite this Article Set citation alerts
    Xiuye Liu, Jianhua Zeng. Nonlinear localization of ultracold atomic Fermi gas in moiré optical lattices[J]. Advanced Photonics Nexus, 2024, 3(3): 036006 Copy Citation Text show less
    References

    [1] E. Zohar, J. I. Cirac, B. Reznik. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Rep. Prog. Phys., 79, 014401(2015).

    [2] C. Gross, I. Bloch. Quantum simulations with ultracold atoms in optical lattices. Science, 357, 995-1001(2017).

    [3] F. Schäfer et al. Tools for quantum simulation with ultracold atoms in optical lattices. Nat. Rev. Phys., 2, 411-425(2020).

    [4] O. Morsch, M. Oberthaler. Dynamics of Bose–Einstein condensates in optical lattices. Rev. Mod. Phys., 78, 179(2006).

    [5] P. G. Kevrekidis, D. J. Frantzeskakis, R. Carretero-González. Emergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment, 45(2008).

    [6] Y. V. Kartashov, B. A. Malomed, L. Torner. Solitons in nonlinear lattices. Rev. Mod. Phys., 83, 247(2011).

    [7] Y. V. Kartashov et al. Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat. Rev. Phys., 1, 185-197(2019).

    [8] L. Zeng, J. Zeng. Gap-type dark localized modes in a Bose–Einstein condensate with optical lattices. Adv. Photonics, 1, 046004(2019).

    [9] J.-C. Shi, J.-H. Zeng. Self-trapped spatially localized states in combined linear-nonlinear periodic potentials. Front. Phys., 15, 12602(2020).

    [10] J. Li, J. Zeng. Dark matter-wave gap solitons in dense ultracold atoms trapped by a one-dimensional optical lattice. Phys. Rev. A, 103, 013320(2021).

    [11] J. Chen, J. Zeng. Dark matter-wave gap solitons of Bose–Einstein condensates trapped in optical lattices with competing cubic-quintic nonlinearities. Chaos, Solitons Fractals, 150, 111149(2021).

    [12] Z. Chen, J. Zeng. Localized gap modes of coherently trapped atoms in an optical lattice. Opt. Express, 29, 3011-3025(2021).

    [13] Z. Chen, J. Zeng. Two-dimensional optical gap solitons and vortices in a coherent atomic ensemble loaded on optical lattices. Commun. Nonlinear Sci. Numer. Simul., 102, 105911(2021).

    [14] X. Liu, B. A. Malomed, J. Zeng. Localized modes in nonlinear fractional systems with deep lattices. Adv. Theor. Simul., 5, 2100482(2022).

    [15] Z. Chen, J. Zeng. Nonlinear localized modes in one-dimensional nanoscale dark-state optical lattices. Nanophotonics, 11, 3465-3474(2022).

    [16] S. K. Adhikari, B. A. Malomed. Tightly bound gap solitons in a fermi gas. Europhys. Lett., 79, 50003(2007).

    [17] S. K. Adhikari, B. A. Malomed. Gap solitons in a model of a superfluid fermion gas in optical lattices. Physica D, 238, 1402-1412(2009).

    [18] B. A. Malomed, V. Nascimento, S. K. Adhikari. Gap solitons in fermion superfluids. Math. Comput. Simul., 80, 648-659(2009).

    [19] J.-K. Xue, A.-X. Zhang. Superfluid Fermi gas in optical lattices: self-trapping, stable, moving solitons and breathers. Phys. Rev. Lett., 101, 180401(2008).

    [20] M. Hachmann et al. Quantum degenerate Fermi gas in an orbital optical lattice. Phys. Rev. Lett., 127, 033201(2021).

    [21] P. Wang et al. Observation of localization of light in linear photonic quasicrystals with diverse rotational symmetries. Nat. Photonics, 18, 224-229(2024).

    [22] R. Bistritzer, A. H. MacDonald. Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. U. S. A., 108, 12233-12237(2011).

    [23] Y. Cao et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556, 43-50(2018).

    [24] Y. Cao et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 556, 80-84(2018).

    [25] M. Yankowitz et al. Tuning superconductivity in twisted bilayer graphene. Science, 363, 1059-1064(2019).

    [26] L. Du et al. Moiré photonics and optoelectronics. Science, 379, eadg0014(2023).

    [27] S. Carr et al. Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B, 95, 075420(2017).

    [28] S. Carr, S. Fang, E. Kaxiras. Electronic-structure methods for twisted Moiré layers. Nat. Rev. Mater., 5, 748-763(2020).

    [29] P. Törmä, S. Peotta, B. A. Bernevig. Superconductivity, superfluidity and quantum geometry in twisted multilayer systems. Nat. Rev. Phys., 4, 528-542(2022).

    [30] C. Huang et al. Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials. Sci. Rep., 6, 32546(2016).

    [31] P. Wang et al. Localization and delocalization of light in photonic Moiré lattices. Nature, 577, 42-46(2020).

    [32] Q. Fu et al. Optical soliton formation controlled by angle twisting in photonic Moiré lattices. Nat. Photonics, 14, 663-668(2020).

    [33] P. Wang et al. Two-dimensional Thouless pumping of light in photonic Moiré lattices. Nat. Commun., 13, 6738(2022).

    [34] S. Sunku et al. Photonic crystals for nano-light in moiré graphene superlattices. Science, 362, 1153-1156(2018).

    [35] W. J. Kort-Kamp et al. Photonic spin Hall effect in bilayer graphene Moiré superlattices. Phys. Rev. B, 98, 195431(2018).

    [36] G. Hu et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 582, 209-213(2020).

    [37] M. Chen et al. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater., 19, 1307-1311(2020).

    [38] W. Wang et al. Moiré fringe induced gauge field in photonics. Phys. Rev. Lett., 125, 203901(2020).

    [39] K. Dong et al. Flat bands in magic-angle bilayer photonic crystals at small twists. Phys. Rev. Lett., 126, 223601(2021).

    [40] H. Tang et al. Modeling the optical properties of twisted bilayer photonic crystals. Light Sci. Appl., 10, 157(2021).

    [41] X.-R. Mao et al. Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol., 16, 1099-1105(2021).

    [42] H.-Y. Luan et al. Reconfigurable Moiré nanolaser arrays with phase synchronization. Nature, 624, 282-288(2023).

    [43] C. Huang et al. Fundamental and vortex gap solitons in quasiperiodic photonic lattices. Opt. Lett., 46, 5691-5694(2021).

    [44] Z. Chen, X. Liu, J. Zeng. Electromagnetically induced moiré optical lattices in a coherent atomic gas. Front. Phys., 17, 42508(2022).

    [45] Y. V. Kartashov et al. Multifrequency solitons in commensurate-incommensurate photonic Moiré lattices. Phys. Rev. Lett., 127, 163902(2021).

    [46] Y. V. Kartashov. Light bullets in Moiré lattices. Opt. Lett., 47, 4528-4531(2022).

    [47] S. K. Ivanov et al. Vortex solitons in Moiré optical lattices. Opt. Lett., 48, 3797-3800(2023).

    [48] A. Arkhipova et al. Observation of linear and nonlinear light localization at the edges of Moiré arrays. Phys. Rev. Lett., 130, 083801(2023).

    [49] X. Liu, J. Zeng. Gap solitons in parity–time symmetric Moiré optical lattices. Photonics Res., 11, 196-202(2023).

    [50] X. Liu, J. Zeng. Matter-wave gap solitons and vortices of dense Bose–Einstein condensates in moiré optical lattices. Chaos, Solitons Fractals, 174, 113869(2023).

    [51] Z. Meng et al. Atomic Bose–Einstein condensate in twisted-bilayer optical lattices. Nature, 615, 231-236(2023).

    [52] C. Chin et al. Feshbach resonances in ultracold gases. Rev. Mod. Phys., 82, 1225(2010).

    [53] J. Yang. Nonlinear Waves in Integrable and Nonintegrable Systems(2010).

    [54] N. Vakhitov, A. A. Kolokolov. Stationary solutions of the wave equation in the medium with nonlinearity saturation. Radiophys. Quantum Electron., 16, 783-789(1973).

    Xiuye Liu, Jianhua Zeng. Nonlinear localization of ultracold atomic Fermi gas in moiré optical lattices[J]. Advanced Photonics Nexus, 2024, 3(3): 036006
    Download Citation