• Chinese Journal of Lasers
  • Vol. 50, Issue 6, 0612002 (2023)
Mengyu Xing1、2, Xiaomin Guo1、2, Haojie Zhang1、2, Jianchao Zhang1、2, and Yanqiang Guo1、2、*
Author Affiliations
  • 1Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • 2State Key Laboratory of Cryptology, Beijing 100878, China
  • show less
    DOI: 10.3788/CJL220768 Cite this Article Set citation alerts
    Mengyu Xing, Xiaomin Guo, Haojie Zhang, Jianchao Zhang, Yanqiang Guo. Precisely Reconstructing Phase Space Distribution of Different Chaotic Lasers Using Maximum Likelihood Method[J]. Chinese Journal of Lasers, 2023, 50(6): 0612002 Copy Citation Text show less
    References

    [1] Argyris A, Syvridis D, Larger L et al. Chaos-based communications at high bit rates using commercial fibre-optic links[J]. Nature, 438, 343-346(2005).

    [2] Jiang N, Pan W, Yan L S et al. Chaos synchronization and communication in mutually coupled semiconductor lasers driven by a third laser[J]. Journal of Lightwave Technology, 28, 1978-1986(2010).

    [3] Soriano M C, García-Ojalvo J, Mirasso C R et al. Complex photonics: dynamics and applications of delay-coupled semiconductors lasers[J]. Reviews of Modern Physics, 85, 421-470(2013).

    [4] Sciamanna M, Shore K A. Physics and applications of laser diode chaos[J]. Nature Photonics, 9, 151-162(2015).

    [5] Kreinberg S, Porte X, Schicke D et al. Mutual coupling and synchronization of optically coupled quantum-dot micropillar lasers at ultra-low light levels[J]. Nature Communications, 10, 1539(2019).

    [6] Yan S L. Chaotic laser parallel series synchronization and its repeater applications in secure communication[J]. Acta Physica Sinica, 68, 170502(2019).

    [7] Jiang L, Pan Y, Yi A L et al. Trading off security and practicability to explore high-speed and long-haul chaotic optical communication[J]. Optics Express, 29, 12750-12762(2021).

    [8] Uchida A, Amano K, Inoue M et al. Fast physical random bit generation with chaotic semiconductor lasers[J]. Nature Photonics, 2, 728-732(2008).

    [9] Reidler I, Aviad Y, Rosenbluh M et al. Ultrahigh-speed random number generation based on a chaotic semiconductor laser[J]. Physical Review Letters, 103, 024102(2009).

    [10] Virte M, Mercier E, Thienpont H et al. Physical random bit generation from chaotic solitary laser diode[J]. Optics Express, 22, 17271-17280(2014).

    [11] Wang A B, Li P, Zhang J G et al. 4.5 Gbps high-speed real-time physical random bit generator[J]. Optics Express, 21, 20452-20462(2013).

    [12] Wang H N, Xiang S Y, Gong J K. Multi-user image encryption algorithm based on synchronized random bits generator in semiconductor lasers network[J]. Multimedia Tools and Applications, 78, 26181-26201(2019).

    [13] Gao H, Wang A B, Wang L S et al. 0.75 Gbit/s high-speed classical key distribution with mode-shift keying chaos synchronization of Fabry–Perot lasers[J]. Light: Science & Applications, 10, 172(2021).

    [14] Zhao Z X, Cheng M F, Luo C K et al. Semiconductor-laser-based hybrid chaos source and its application in secure key distribution[J]. Optics Letters, 44, 2605-2608(2019).

    [15] Lin F Y, Liu J M. Chaotic lidar[J]. IEEE Journal of Selected Topics in Quantum Electronics, 10, 991-997(2004).

    [16] Wang Y C, Wang B J, Wang A B. Chaotic correlation optical time domain reflectometer utilizing laser diode[J]. IEEE Photonics Technology Letters, 20, 1636-1638(2008).

    [17] Wang Y H, Zhang M J, Zhang J Z et al. Millimeter-level-spatial-resolution Brillouin optical correlation-domain analysis based on broadband chaotic laser[J]. Journal of Lightwave Technology, 37, 3706-3712(2019).

    [18] Yao T F, Zhu D, Ben D et al. Distributed MIMO chaotic radar based on wavelength-division multiplexing technology[J]. Optics Letters, 40, 1631-1634(2015).

    [19] Appeltant L, Soriano M C, van der Sande G et al. Information processing using a single dynamical node as complex system[J]. Nature Communications, 2, 468(2011).

    [20] Zhao Q C, Yin H X. Research progress of reservoir computing using chaotic laser[J]. Laser & Optoelectronics Progress, 50, 030003(2013).

    [21] Wu J G, Wu Z M, Xia G Q et al. Evolution of time delay signature of chaos generated in a mutually delay-coupled semiconductor lasers system[J]. Optics Express, 20, 1741-1753(2012).

    [22] Li S S, Chan S C. Chaotic time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 541-552(2015).

    [23] Zhong Z Q, Wu Z M, Xia G Q. Experimental investigation on the time-delay signature of chaotic output from a 1550  nm VCSEL subject to FBG feedback[J]. Photonics Research, 5, 6-10(2017).

    [24] Wang Y, Xiang S Y, Wang B et al. Time-delay signature concealment and physical random bits generation in mutually coupled semiconductor lasers with FBG filtered injection[J]. Optics Express, 27, 8446-8455(2019).

    [25] Guo Y Q, Liu T, Zhao T et al. Chaotic time-delay signature suppression and entropy growth enhancement using frequency-band extractor[J]. Entropy, 23, 516(2021).

    [26] Li N Q, Kim B, Locquet A et al. Statistics of the optical intensity of a chaotic external-cavity DFB laser[J]. Optics Letters, 39, 5949-5952(2014).

    [27] Hart J D, Terashima Y, Uchida A et al. Recommendations and illustrations for the evaluation of photonic random number generators[J]. APL Photonics, 2, 090901(2017).

    [28] Hong Y H, Ji S K. Effect of digital acquisition on the complexity of chaos[J]. Optics Letters, 42, 2507-2510(2017).

    [29] Xiang S Y, Wen A J, Pan W et al. Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays[J]. Journal of Lightwave Technology, 34, 4221-4227(2016).

    [30] Fang X, Gao Q Z, Zhang J J et al. Entropy enhancement of chaotic laser via quantum noise[J]. Chinese Journal of Lasers, 48, 2112001(2021).

    [31] Guo Y Q, Fang X, Zhang H J et al. Chaotic time-delay signature suppression using quantum noise[J]. Optics Letters, 46, 4888-4891(2021).

    [32] Guo X M, Liu T, Wang L J et al. Evaluating entropy rate of laser chaos and shot noise[J]. Optics Express, 28, 1238-1248(2020).

    [33] Ji Y L, Guo X M, Li P et al. Suppression of time-delay signature and enhancement of stochastic statistical properties of chaotic laser by filtering[J]. Chinese Journal of Lasers, 45, 1008001(2018).

    [34] Albert F, Hopfmann C, Reitzenstein S et al. Observing chaos for quantum-dot microlasers with external feedback[J]. Nature Communications, 2, 366(2011).

    [35] Lebreton A, Abram I, Braive R et al. Unequivocal differentiation of coherent and chaotic light through interferometric photon correlation measurements[J]. Physical Review Letters, 110, 163603(2013).

    [36] Lan D D, Guo X M, Peng C S et al. Photon number distribution and second-order degree of coherence of a chaotic laser: analysis and experimental investigation[J]. Acta Physica Sinica, 66, 120502(2017).

    [37] Guo Y Q, Peng C S, Ji Y L et al. Photon statistics and bunching of a chaotic semiconductor laser[J]. Optics Express, 26, 5991-6000(2018).

    [38] Guo Y Q, Wang L J, Wang Y et al. High-order photon correlations through double Hanbury Brown-Twiss measurements[J]. Journal of Optics, 22, 095202(2020).

    [39] Liu T, Guo X M, Zhang H J et al. Analysis and measurement of photon cross-correlation of chaotic laser[J]. Acta Optica Sinica, 41, 2414002(2021).

    [40] Fano U. Description of states in quantum mechanics by density matrix and operator techniques[J]. Reviews of Modern Physics, 29, 74-93(1957).

    [41] Vogel K, Risken H. Determination of quasi probability distributions in terms of probability distributions for the rotated quadrature phase[J]. Physical Review A, 40, 2847-2849(1989).

    [42] Smithey D T, Beck M, Raymer M G et al. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum[J]. Physical Review Letters, 70, 1244-1247(1993).

    [43] Lvovsky A I. Iterative maximum-likelihood reconstruction in quantum homodyne tomography[J]. Journal of Optics B: Quantum and Semiclassical Optics, 6, S556-S559(2004).

    [44] Lvovsky A I, Raymer M G. Continuous-variable optical quantum-state tomography[J]. Reviews of Modern Physics, 81, 299-332(2009).

    [45] Ye C G, Zhang J. Generation of squeezed vacuum states by PPKTP crystal and its Wigner quasi-probability distribution function reconstruction[J]. Acta Physica Sinica, 57, 6962-6967(2008).

    [46] Breitenbach G, Schiller S, Mlynek J. Measurement of the quantum states of squeezed light[J]. Nature, 387, 471-475(1997).

    [47] Li Q H, Yao W X, Li F et al. Manipulations and quantum tomography of bright squeezed states[J]. Acta Physica Sinica, 70, 154203(2021).

    [48] Yang R G, Zhang J, Zhai S Q et al. Quantum resonstruction of Wigner quasiprobability distribution function of high order TEM01 squeezed states[J]. Chinese Journal of Lasers, 41, 0318001(2014).

    [49] Hacker B, Welte S, Daiss S et al. Deterministic creation of entangled atom–light Schrödinger-cat states[J]. Nature Photonics, 13, 110-115(2019).

    [50] Zhang N N, Li S J, Yan H M et al. Effect of imperfect experimental condition on generation of Schrodinger cat state[J]. Acta Physica Sinica, 67, 234203(2018).

    [51] Chrapkiewicz R, Jachura M, Banaszek K et al. Hologram of a single photon[J]. Nature Photonics, 10, 576-579(2016).

    [52] Deléglise S, Dotsenko I, Sayrin C et al. Reconstruction of non-classical cavity field states with snapshots of their decoherence[J]. Nature, 455, 510-514(2008).

    Mengyu Xing, Xiaomin Guo, Haojie Zhang, Jianchao Zhang, Yanqiang Guo. Precisely Reconstructing Phase Space Distribution of Different Chaotic Lasers Using Maximum Likelihood Method[J]. Chinese Journal of Lasers, 2023, 50(6): 0612002
    Download Citation