• Journal of Semiconductors
  • Vol. 42, Issue 4, 041307 (2021)
Songtao Liu1 and Akhilesh Khope2
Author Affiliations
  • 1Ayar Labs, 3351 Olcott St, Santa Clara, CA 95054, USA
  • 2Microsoft Corporation, One Microsoft Way, Redmond, Washington, 98052, USA
  • show less
    DOI: 10.1088/1674-4926/42/4/041307 Cite this Article
    Songtao Liu, Akhilesh Khope. Latest advances in high-performance light sources and optical amplifiers on silicon[J]. Journal of Semiconductors, 2021, 42(4): 041307 Copy Citation Text show less
    References

    [1] A Rahim, T Spuesens, R Baets et al. Open-access silicon photonics: Current status and emerging initiatives. Proc IEEE, 106, 2313(2018).

    [2] T Pinguet, S Denton, S Gloeckner et al. High-volume manufacturing platform for silicon photonics. Proc IEEE, 106, 2281(2018).

    [3] X Chen, M M Milosevic, S Stanković et al. The emergence of silicon photonics as a flexible technology platform. Proc IEEE, 106, 2101(2018).

    [4] M Glick, N C Abrams, Q X Cheng et al. PINE: photonic integrated networked energy efficient datacenters (ENLITENED program). J Opt Commun Netw, 12, 443(2020).

    [5]

    [6] T Komljenovic, D N Huang, P Pintus et al. Photonic integrated circuits using heterogeneous integration on silicon. Proc IEEE, 106, 2246(2018).

    [7]

    [8] D Liang, J E Bowers. Recent progress in lasers on silicon. Nat Photonics, 4, 511(2010).

    [9] A W Fang, H Park, O Cohen et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt Express, 14, 9203(2006).

    [10] R Jones, P Doussiere, J B Driscoll et al. Heterogeneously integrated InP\/silicon photonics: Fabricating fully functional transceivers. IEEE Nanotechnol Mag, 13, 17(2019).

    [11] A Y Liu, J Bowers. Photonic integration with epitaxial III–V on silicon. IEEE J Sel Top Quantum Electron, 24, 6000412(2018).

    [12] J C Norman, D Jung, Y T Wan et al. Perspective: The future of quantum dot photonic integrated circuits. APL Photonics, 3, 030901(2018).

    [13] H S Rong, S B Xu, Y H Kuo et al. Low-threshold continuous-wave Raman silicon laser. Nat Photonics, 1, 232(2007).

    [14] J F Liu, X C Sun, R Camacho-Aguilera et al. Ge-on-Si laser operating at room temperature. Opt Lett, 35, 679(2010).

    [15] Z C Wang, A Abbasi, U Dave et al. Novel light source integration approaches for silicon photonics. Laser Photonics Rev, 11, 1700063(2017).

    [16] A W Fang, B R Koch, K G Gan et al. A racetrack mode-locked silicon evanescent laser. Opt Express, 16, 1393(2008).

    [17] Z C Wang, K van Gasse, V Moskalenko et al. A III-V-on-Si ultra-dense comb laser. Light: Sci Appl, 6, e16260(2017).

    [18] C Zhang, S Srinivasan, Y Tang et al. Low threshold and high speed short cavity distributed feedback hybrid silicon lasers. Opt Express, 22, 10202(2014).

    [19] D Liang, X Huang, G Kurczveil et al. Integrated finely tunable microring laser on silicon. Nat Photonics, 10, 719(2016).

    [20] T Komljenovic, S Srinivasan, E Norberg et al. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE J Sel Top Quantum Electron, 21, 214(2015).

    [21] G Kurczveil, M J R Heck, J D Peters et al. An integrated hybrid silicon multiwavelength AWG laser. IEEE J Sel Top Quantum Electron, 17, 1521(2011).

    [22] C Zhang, S J Zhang, J D Peters et al. 8 × 8 × 40 Gbps fully integrated silicon photonic network on chip. Optica, 3, 785(2016).

    [23] G Roelkens, L Liu, D Liang et al. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photonics Rev, 4, 751(2010).

    [24] M A Tran, D N Huang, J E Bowers. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration. APL Photonics, 4, 111101(2019).

    [25] C Henry. Theory of the linewidth of semiconductor lasers. IEEE J Quantum Electron, 18, 259(1982).

    [26] M L Davenport, S T Liu, J E Bowers. Integrated heterogeneous silicon/III–V mode-locked lasers. Photon Res, 6, 468(2018).

    [27] C T Santis, S T Steger, Y Vilenchik et al. High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms. Proc Natl Acad Sci USA, 111, 2879(2014).

    [28] M Tran, D N Huang, T Komljenovic et al. Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics. Appl Sci, 8, 1139(2018).

    [29] J F Bauters, M J R Heck, D John et al. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt Express, 19, 3163(2011).

    [30]

    [31] D N Huang, M A Tran, J Guo et al. High-power sub-kHz linewidth lasers fully integrated on silicon. Optica, 6, 745(2019).

    [32] B Liu, A Shakouri, J E Bowers. Passive microring-resonator-coupled lasers. Appl Phys Lett, 79, 3561(2001).

    [33] A Malik, J Guo, M A Tran et al. Widely tunable, heterogeneously integrated quantum-dot O-band lasers on silicon. Photon Res, 8, 1551(2020).

    [34] C Xiang, W Jin, J Guo et al. Effects of nonlinear loss in high-Q Si ring resonators for narrow-linewidth III-V/Si heterogeneously integrated tunable lasers. Opt Express, 28, 19926(2020).

    [35]

    [36] C Xiang, W Jin, J Guo et al. Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica, 7, 20(2020).

    [37] C O de Beeck, B Haq, L Elsinger et al. Heterogeneous III-V on silicon nitride amplifiers and lasers via microtransfer printing. Optica, 7, 386(2020).

    [38] H Park, C Zhang, M A Tran et al. Heterogeneous silicon nitride photonics. Optica, 7, 336(2020).

    [39] Q X Cheng, M Bahadori, M Glick et al. Recent advances in optical technologies for data centers: A review. Optica, 5, 1354(2018).

    [40]

    [41] T W Berg, J Mork. Saturation and noise properties of quantum-dot optical amplifiers. IEEE J Quantum Electron, 40, 1527(2004).

    [42] H Park, A W Fang, O Cohen et al. A hybrid AlGaInAs–silicon evanescent amplifier. IEEE Photonics Technol Lett, 19, 230(2007).

    [43] M L Davenport, S Skendžić, N Volet et al. Heterogeneous silicon/III –V semiconductor optical amplifiers. IEEE J Sel Top Quantum Electron, 22, 78(2016).

    [44] S Cheung, Y Kawakita, K Shang et al. Highly efficient chip-scale III –V/silicon hybrid optical amplifiers. Opt Express, 23, 22431(2015).

    [45] K van Gasse, R J Wang, G Roelkens. 27 dB gain III–V-on-silicon semiconductor optical amplifier with > 17 dBm output power. Opt Express, 27, 293(2019).

    [46] S M Chen, W Li, J Wu et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photonics, 10, 307(2016).

    [47] J C Norman, D Jung, Z Y Zhang et al. A review of high-performance quantum dot lasers on silicon. IEEE J Quantum Electron, 55, 2000511(2019).

    [48] S J Pan, V Cao, M Y Liao et al. Recent progress in epitaxial growth of III –V quantum-dot lasers on silicon substrate. J Semicond, 40, 101302(2019).

    [49] B Shi, Y Han, Q Li et al. 1.55-μm lasers epitaxially grown on silicon. IEEE J Sel Top Quantum Electron, 25, 1900711(2019).

    [50] W Q Wei, Q Feng, Z H Wang et al. Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates. J Semicond, 40, 53(2019).

    [51] D Jung, Z Y Zhang, J Norman et al. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photonics, 5, 1094(2018).

    [52] A Y Liu, S Srinivasan, J Norman et al. Quantum dot lasers for silicon photonics. Photonics Res, 3, B1(2015).

    [53] T Wang, H Liu, A Lee et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express, 19, 11381(2011).

    [54] A Y Liu, J Peters, X Huang et al. Electrically pumped continuous-wave 13 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt Lett, 42, 338(2017).

    [55] S M Chen, M Y Liao, M C Tang et al. Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. Opt Express, 25, 4632(2017).

    [56] Y T Wan, J Norman, Q Li et al. 13 μm submilliamp threshold quantum dot micro-lasers on Si. Optica, 4, 940(2017).

    [57] W Q Wei, J Y Zhang, J H Wang et al. Phosphorus-free 1.5 μm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform. Opt Lett., 45, 2042(2020).

    [58] Y T Wan, S Zhang, J C Norman et al. Tunable quantum dot lasers grown directly on silicon. Optica, 6, 1394(2019).

    [59] S T Liu, J Norman, M Dumont et al. High-performance O-band quantum-dot semiconductor optical amplifiers directly grown on a CMOS compatible silicon substrate. ACS Photonics, 6, 2523(2019).

    [60] S T Liu, X R Wu, D Jung et al. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity. Optica, 6, 128(2019).

    [61] Z Y Zhang, Z Y Zhang, J C Norman et al. Integrated dispersion compensated mode-locked quantum dot laser. Photon Res, 8, 1428(2020).

    [62] Y Wang, S M Chen, Y Yu et al. Monolithic quantum-dot distributed feedback laser array on silicon. Optica, 5, 528(2018).

    [63] Y T Wan, J C Norman, Y Y Tong et al. Quantum dot lasers: 1.3 μm quantum dot-distributed feedback lasers directly grown on (001) Si (laser photonics rev. 14(7)/2020). Laser Photonics Rev, 14, 2070042(2020).

    [64] B L Chen, Y T Wan, Z Y Xie et al. Low dark current high gain InAs quantum dot avalanche photodiodes monolithically grown on Si. ACS Photonics, 7, 528(2020).

    [65] W Q Wei, Q Feng, J J Guo et al. InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration. Opt Express, 28, 26555(2020).

    [66] Z Y Zhang, D Jung, J C Norman et al. Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications. IEEE J Sel Top Quantum Electron, 25, 1900509(2019).

    [67] W W Chow, Z Y Zhang, J C Norman et al. On quantum-dot lasing at gain peak with linewidth enhancement factor αH = 0. APL Photonics, 5, 026101(2020).

    [68] H M Huang, J N Duan, D Jung et al. Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon. J Opt Soc Am B, 35, 2780(2018).

    [69] M G Thompson, A R Rae, M Xia et al. InGaAs quantum-dot mode-locked laser diodes. IEEE J Sel Top Quantum Electron, 15, 661(2009).

    [70] S T Liu, H T Wang, M D Sun et al. AWG-based monolithic 4 × 12 GHz multichannel harmonically mode-locked laser. IEEE Photonics Technol Lett, 28, 241(2016).

    [71] J N Kemal, P Marin-Palomo, V Panapakkam et al. WDM transmission using quantum-dash mode-locked laser diodes as multi-wavelength source and local oscillator. 2017 Opt Fiber Commun Conf Exhib OFC, 1(2017).

    [72] A S P Khope, M Saeidi, R Yu et al. Multi-wavelength selective crossbar switch. Opt Express, 27, 5203(2019).

    [73] A S P Khope, S T Liu, Z Y Zhang et al. 2 λ switch. Opt Lett, 45, 5340(2020).

    [74] S T Liu, J C Norman, D Jung et al. Monolithic 9 GHz passively mode locked quantum dot lasers directly grown on on-axis (001) Si. Appl Phys Lett, 113, 041108(2018).

    [75] S Liu, D Jung, J C Norman et al. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si. Electron Lett, 54, 432(2018).

    [76] S T Liu, X R Wu, J Norman et al. 100 GHz colliding pulse mode locked quantum dot lasers directly grown on Si for WDM application. Conference on Lasers and Electro-Optics, ATu3P-5(2019).

    [77] D Auth, S Liu, J Norman et al. Passively mode-locked semiconductor quantum dot on silicon laser with 400 Hz RF line width. Opt Express, 27, 27256(2019).

    [78] X R Wu, S T Liu, D Jung et al. Terabit interconnects with a 20-GHz O-band passively mode locked quantum dot laser grown directly on silicon. Optical Fiber Communication Conference (OFC), W2A-3(2019).

    [79] Z G Lu, J R Liu, S Raymond et al. 312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser. Opt Express, 16, 10835(2008).

    [80] F Gao, S Luo, H M Ji et al. Single-section mode-locked 1.55-μm InAs/InP quantum dot lasers grown by MOVPE. Opt Commun, 370, 18(2016).

    [81] R Rosales, S G Murdoch, R T Watts et al. High performance mode locking characteristics of single section quantum dash lasers. Opt Express, 20, 8649(2012).

    [82] W W Chow, S T Liu, Z Y Zhang et al. Multimode description of self-mode locking in a single-section quantum-dot laser. Opt Express, 28, 5317(2020).

    [83] P Bardella, L L Columbo, M Gioannini. Self-generation of optical frequency comb in single section quantum dot Fabry-Perot lasers: A theoretical study. Opt Express, OE, 25, 26234(2017).

    [84] T Akiyama, M Sugawara, Y Arakawa. Quantum-dot semiconductor optical amplifiers. Proc IEEE, 95, 1757(2007).

    [85] S T Liu, Y Y Tong, J Norman et al. High efficiency, high gain and high saturation output power quantum dot SOAs grown on Si and applications. Optical Fiber Communication Conference (OFC), 1(2020).

    [86] J E Bowers, A Gossard, D Jung et al. Quantum dot photonic integrated circuits on silicon. Conference on Lasers and Electro-Optics, 1(2018).

    [87] Y Han, Z Yan, W K Ng et al. Bufferless 1.5 μm III-V lasers grown on Si-photonics 220 nm silicon-on-insulator platforms. Optica, 7, 148(2020).

    Songtao Liu, Akhilesh Khope. Latest advances in high-performance light sources and optical amplifiers on silicon[J]. Journal of Semiconductors, 2021, 42(4): 041307
    Download Citation