• High Power Laser and Particle Beams
  • Vol. 34, Issue 1, 011004 (2022)
Yuanan Zhao1、2, Jianda Shao1、2, Xiaofeng Liu1、2, and Dawei Li1、2
Author Affiliations
  • 1Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China
  • 2Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China
  • show less
    DOI: 10.11884/HPLPB202234.210331 Cite this Article
    Yuanan Zhao, Jianda Shao, Xiaofeng Liu, Dawei Li. Tracking and understanding laser damage events in optics[J]. High Power Laser and Particle Beams, 2022, 34(1): 011004 Copy Citation Text show less
    References

    [1] McClung F J, Hellwarth R W. Giant optical pulsations from ruby[J]. Journal of Applied Physics, 33, 828-829(1962).

    [2] Hopper R W, Uhlmann D R. Mechanism of inclusion damage in laser glass[J]. Journal of Applied Physics, 41, 4023-4037(1970).

    [3] Carr C W, Bude J D, Demange P. Laser-supported solid-state absorption fronts in silica[J]. Physical Review B, 82, 184304(2010).

    [4] Bloembergen N. Laser-induced electric breakdown in solids[J]. IEEE Journal of Quantum Electronics, 10, 375-386(1974).

    [5] Epifanov A S, Manenkov A A, Prokhorov A M. Theory of avalanche ionization induced in transparent dielectrics by an electromagnetic field[J]. Journal of Experimental and Theoretical Physics, 43, 377-382(1976).

    [6] Schaffer C B, Brodeur A, Mazur E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses[J]. Measurement Science and Technology, 12, 1784-1794(2001).

    [7] Deng Hongxiang, Guo Wenli, Gao Huanhuan, et al. A numerical approach for femtosecond laser-induced photoionization in solids and its application[J]. Journal of Optics, 21, 075501(2019).

    [8] Jing Xufeng, Tian Ying, Zhang Junchao, et al. Modeling validity of femtosecond laser breakdown in wide bandgap dielectrics[J]. Applied Surface Science, 258, 4741-4749(2012).

    [9] Dijon J, Poulingue M, Hue J. Thermomechanical model of mirr laser damage at 1.06 μm: I. Nodule ejection[C]Proceedings of SPIE 3578 LaserInduced Damage in Optical Materials. 1999: 387397.

    [10] Liu Xiaofeng, Li Dawei, Zhao Yuan’an, et al. Characteristics of nodular defect in HfO2/SiO2 multilayer optical coatings[J]. Applied Surface Science, 256, 3783-3788(2010).

    [11] Papernov S. Mechanisms of near-ultraviolet, nanosecond-pulse–laser damage in HfO2/SiO2-based multilayer coatings[J]. Chinese Optics Letters, 11, S10703(2013).

    [12] Li Cheng, Zhao Yuan’an, Cui Yun, et al. Comparison of 355-nm nanosecond and 1064-nm picosecond laser-induced damage in high-reflective coatings[J]. Optical Engineering, 57, 121908(2018).

    [13] Bden M R, Folta J A, Stolz C J, et al. Improved method f laser damage testing coated optics[C]Proceedings of SPIE 5991, LaserInduced Damage in Optical Materials. 2005: 59912A.

    [14] Taniguchi J, Lebarron N E, Howe J, et al. Functional damage thresholds of hafniasilica coating designs f the NIF laser[C]Proceedings of SPIE 4347, LaserInduced Damage in Optical Materials. 2001: 109117.

    [15] Stolz C J. Status of NIF mirr technologies f completion of the NIF facility[C]Proceedings of SPIE 7101, Advances in Optical Thin Films III. 2008: 710115.

    [16] Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF Laser[J]. Fusion Science and Technology, 69, 25-145(2016).

    [17] Suratwala T I, Miller P E, Bude J D, et al. HF-based etching processes for improving laser damage resistance of fused silica optical surfaces[J]. Journal of the American Ceramic Society, 94, 416-428(2011).

    [18] Bude J, Miller P, Baxamusa S, et al. High fluence laser damage precursors and their mitigation in fused silica[J]. Optics Express, 22, 5839-5851(2014).

    [19] Liu Xiaofeng, Li Dawei, Zhao Yuan’an, et al. Further investigation of the characteristics of nodular defects[J]. Applied Optics, 49, 1774-1779(2010).

    [20] Shan Yongguang, He Hongbo, Wei Chaoyang, et al. Geometrical characteristics and damage morphology of nodules grown from artificial seeds in multilayer coating[J]. Applied Optics, 49, 4290-4295(2010).

    [22] Shan Yongguang, He Hongbo, Wei Chaoyang, et al. Thermomechanical analysis of nodule damage in HfO2/SiO2 multilayer coatings[J]. Chinese Optics Letters, 9, 103101(2011).

    [23] Stolz C J. Engineering highdamagethreshold NIF polarizers mirrs [R]. ICF Quarterly Rept, 1999, 9(2): 151162.

    [24] Demange P P, Negres R A, Radousky H B, et al. Differentiation of defect populations responsible for bulk laser-induced damage in potassium dihydrogen phosphate crystals[J]. Optical Engineering, 45, 104205(2010).

    [25] Demos S G, Demange P, Negres R A, et al. Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals[J]. Optics Express, 18, 13788-13804(2010).

    [26] Reyné S, Duchateau G, Natoli J Y, et al. Laser-induced damage of KDP crystals by 1ω nanosecond pulses: influence of crystal orientation[J]. Optics Express, 17, 21652-21665(2009).

    [27] Baisden P A, Atherton L J, Hawley R A, et al. Large optics for the National Ignition Facility[J]. Fusion Science and Technology, 69, 295-351(2016).

    [28] Wang Yueliang, Zhao Yuan’an, Xie Xiaoyi, et al. Laser damage dependence on the size and concentration of precursor defects in KDP crystals: view through differently sized filter pores[J]. Optics Letter, 41, 1534-1537(2016).

    [29] Demange P, Negres R A, Carr C W, et al. Laser-induced defect reactions governing damage initiation in DKDP crystals[J]. Optics Express, 14, 5313-5328(2006).

    [30] Duchateau G. Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses[J]. Optics Express, 17, 10434-10456(2009).

    [31] Li Cheng. Dynamics of nanoscale defects induced laser damage of multilayer dielectric coatings[D]. Shanghai: Shanghai Institute of Optics Fine Mechanics, Chinese Academy of Sciences, 2020: 7987

    [32] De Yoreo J J, Burnham A K, Whitman P K. Developing KH2PO4 and KD2PO4 crystals for the world's most power laser[J]. International Materials Reviews, 47, 113-152(2002).

    [33] Sheehan L M, Kozlowski M R, Tench R J. Fullaperture laser conditioning of multilayer mirrs polarizers[C]Proceedings of SPIE 2633, Solid State Lasers f Application to Inertial Confinement Fusion (ICF). 1995: 457463.

    [34] Hunt J T, Manes K R, Renard P A. Hot images from obscurations[J]. Applied Optics, 32, 5973-5982(1993).

    [36] Sheehan L M, Schwartz S, Battersby C L, et al. Automated damage test facilities f materials development production optic quality assurance at Lawrence Liverme National Labaty[C]Proceedings of SPIE 3578, LaserInduced Damage in Optical Materials. 1999: 302313.

    [37] Liao Z M, Spaeth M L, Manes K, et al. Predicting laser-induced bulk damage and conditioning for deuterated potassium dihydrogen phosphate crystals using an absorption distribution model[J]. Optics Letters, 35, 2538-2540(2010).

    [38] Peng Xiaocong, Zhao Yuan’an, Wang Yueliang, et al. Variation of the band structure in DKDP crystal excited by intense sub-picosecond laser pulses[J]. High Power Laser Science and Engineering, 6, 03000e41(2018).

    [39] Wang Yueliang. Laser damage mechanisms laser conditioning properties in Itype KDP IItype DKDP crystals[D]. Shanghai: Shanghai Institute of Optics Fine Mechanics, Chinese Academy of Sciences, 2017: 5366

    CLP Journals

    [1] Hang Yuan, Lingxi Liang, Yuxin Li, Ziqiang Dan, Chengyu Zhu. Evolution of explosion plume on the rear surface of silica elements in nanosecond laser damaging[J]. High Power Laser and Particle Beams, 2023, 35(6): 061002

    [2] Zhengzheng Hu, Liuyang Ma, Hao Hu. A fault diagnosis method for optical elements based on infrared and visible light videos[J]. High Power Laser and Particle Beams, 2023, 35(8): 089002

    [3] Jinfang Shi, Rong Qiu, Decheng Guo, Lei Zhou, Yong Jiang, Qiang Zhou, Jian Yu, Yuanpan Chen, Zhun Xie. Investigating surface damage characteristics in DKDP crystals by laser irradiation at 355 nm and 1064 nm[J]. High Power Laser and Particle Beams, 2023, 35(7): 071003

    Yuanan Zhao, Jianda Shao, Xiaofeng Liu, Dawei Li. Tracking and understanding laser damage events in optics[J]. High Power Laser and Particle Beams, 2022, 34(1): 011004
    Download Citation