• Acta Optica Sinica
  • Vol. 37, Issue 11, 1124002 (2017)
Peng Wan and Cuihong Yang*
Author Affiliations
  • School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China
  • show less
    DOI: 10.3788/AOS201737.1124002 Cite this Article Set citation alerts
    Peng Wan, Cuihong Yang. Properties of Graphene TE Mode Surface Plasmons and Surface Plasmon Waveguides[J]. Acta Optica Sinica, 2017, 37(11): 1124002 Copy Citation Text show less
    References

    [1] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).

    [2] Zhang Xu, Wu Yu, Tong Xuan et al. Study of surface plasmon polariton waveguide of silver nanowire[J]. Acta Optica Sinica, 36, 0124001(2016).

    [3] He X Y, Wang Q J, Yu S F. Analysis of dielectric loaded surface plasmon waveguide structures: Transfer matrix method for plasmonic devices[J]. Journal of Applied Physics, 111, 073108(2012). http://scitation.aip.org/content/aip/journal/jap/111/7/10.1063/1.3703468

    [4] Jablan M, Buljan H, Soljacic M. Plasmonics in graphene at infrared frequencies[J]. Physical Review B, 80, 245435(2009). http://www.nanoopt.org/teaching/mentoring/1066-plasmonics-in-graphene-at-infrared-frequencies.html

    [5] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 6, 183-191(2007).

    [6] Novoselov K S, Morozov S V. Mohinddin T M G, et al. Electronic properties of graphene[J]. Physica Status Solidi (b), 244, 4106-4111(2007).

    [7] Yang Xiaoxia, Kong Xiangtian, Dai Qing. Optical properties of graphene plasmons and their potential applications[J]. Acta Physica Sinica, 64, 106801(2015).

    [8] Bolotin K I, Sikes K J, Jiang Z et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 146, 351-355(2008). http://www.sciencedirect.com/science/article/pii/S0038109808001178

    [9] Nair R R, Blake P, Grigorenko A N et al. Fine structure constant defines visual transparency of graphene[J]. Science, 320, 1308(2008). http://www.jstor.org/stable/20054882

    [10] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 332, 1291-1294(2011).

    [11] Fei Z, Andreev G O, Bao W et al. Infrared nanoscopy of dirac plasmons at the graphene-SiO2 interface[J]. Nano Letters, 11, 4701-4705(2011). http://pubs.acs.org/doi/pdf/10.1021/nl202362d

    [12] Chen J, Badioli M, Alonsogonzalez P et al. Optical nano-imaging of gate-tuneable graphene plasmons[J]. Physics, 487, 77-81(2012). http://www.oalib.com/paper/3603932

    [13] Politano A, Chiarello G. Plasmon modes in graphene: status and prospect[J]. Nanoscale, 6, 10927-10940(2014). http://europepmc.org/abstract/MED/25130215

    [14] Ju L, Geng B, Horng J, Girit C et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 6, 630-634(2011). http://europepmc.org/abstract/med/21892164

    [15] Falkovsky L A, Pershoguba S S. Optical far-infrared properties of a graphene monolayer and multilayer[J]. Physical Review B, 76, 153410(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000016000020000085000001&idtype=cvips&gifs=Yes

    [16] Mikhailov S A, Ziegler K. New electromagnetic mode in graphene[J]. Physical Review Letters, 99, 016803(2007). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.99.016803

    [17] Hanson G W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 103, 064302(2008). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4946711

    [18] Fei Z, Rodin A S, Andreev G O et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 487, 82-85(2012). http://www.ncbi.nlm.nih.gov/PubMed/22722866?dopt=Abstract

    [19] Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics, 6, 749-758(2012).

    [20] Luo X, Qiu T, Lu W et al. Plasmons in graphene: Recent progress and applications[J]. Materials Science and Engineering R, 74, 351-376(2013). http://www.sciencedirect.com/science/article/pii/S0927796X13000879

    [21] He X, Fu J, Fu X et al. Analysis of mid-infrared graphene surface plasmons[J]. Optics Communications, 332, 149-153(2014). http://www.sciencedirect.com/science/article/pii/S0030401814006014

    [22] Koppens F H, Chang D E. Garcia de Abajo F J. Graphene plasmonics: a platform for strong light-matter interactions[J]. Nano Letters, 11, 3370-3377(2011).

    [23] Gan C H, Chu H S, Li E P. Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies[J]. Physical Review B, 85, 125431(2012). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000025000015000076000001&idtype=cvips&gifs=Yes

    [24] He X Y, Li R. Comparison of graphene-based transverse magnetic and electric surface plasmon modes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 62-67(2014). http://ieeexplore.ieee.org/document/6509938/

    [25] Hanson G W. Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide[J]. Journal of Applied Physics, 104, 084314(2008). http://scitation.aip.org/content/aip/journal/jap/104/8/10.1063/1.3005881

    [26] Wang B, Zhang X, Yuan X et al. Optical coupling of surface plasmons between graphene sheets[J]. Applied Physics Letters, 100, 131111(2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6176100

    [27] Kim J T, Choi C G. Graphene-based polymer waveguide polarizer[J]. Optics Express, 20, 3556-3562(2012). http://europepmc.org/abstract/med/22418115

    [28] Ying X, Pu Y, Li Z et al. Absorption enhancement of graphene Salisbury screen in the mid-infrared regime[J]. Journal of Optics, 44, 59-67(2015). http://link.springer.com/article/10.1007/s12596-014-0230-9

    [29] Zhu B, Ren G, Zheng S et al. Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices[J]. Optics Express, 21, 17089-17096(2013). http://europepmc.org/abstract/med/23938557

    [30] Li Yong, Zhang Huifang, Fan Tianxin et al. Theoretical analysis of double dielectric loaded graphene surface plasmon polariton[J]. Acta Optica Sinica, 36, 0724001(2016).

    [31] Sun Y, Zheng Z, Cheng J et al. Graphene surface plasmon waveguides incorporating high-index dielectric ridges for single mode transmission[J]. Optics Communications, 328, 124-128(2014). http://www.sciencedirect.com/science/article/pii/S003040181400412X

    [32] Yan F, Giannini V, Maier S A. Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon[J]. New Journal of Physics, 15, 063020(2013). http://link.springer.com/content/pdf/10.1007/978-94-017-9133-5_40.pdf

    [33] Jablan M, Buljan H, Soljacic M. Transverse electric plasmons in bilayer graphene[J]. Optics Express, 19, 11236-11241(2011). http://www.ncbi.nlm.nih.gov/pubmed/21716353

    [34] Bao Q, Zhang H, Wang B et al. Broadband graphene polarizer[J]. Nature Photonics, 5, 411-415(2011).

    [35] He X Y, Tao J, Meng B. Analysis of graphene TE surface plasmons in the terahertz regime[J]. Nanotechnology, 24, 345203(2013). http://www.ncbi.nlm.nih.gov/pubmed/23912303

    CLP Journals

    [1] Li Wei, Liu Chao, Lü Jingwei, Liu Zhaoting, Wang Famei. LSPR Properties of Metal-Compound-Graphene Composite Nanoarray Structure[J]. Laser & Optoelectronics Progress, 2018, 55(8): 82401

    Peng Wan, Cuihong Yang. Properties of Graphene TE Mode Surface Plasmons and Surface Plasmon Waveguides[J]. Acta Optica Sinica, 2017, 37(11): 1124002
    Download Citation