• Journal of Inorganic Materials
  • Vol. 37, Issue 2, 117 (2021)
Fengjuan ZHANG1、2, Boning HAN2、3, and Haibo ZENG2、*
Author Affiliations
  • 11. Key Laboratory for Special Functional Materials, Henan University, Kaifeng 475004, China
  • 22. MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • 33. Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
  • show less
    DOI: 10.15541/jim20210441 Cite this Article
    Fengjuan ZHANG, Boning HAN, Haibo ZENG. Perovskite Quantum Dot Photovoltaic and Luminescent Concentrator Cells: Current Status and Challenges[J]. Journal of Inorganic Materials, 2021, 37(2): 117 Copy Citation Text show less
    References

    [1] T LEIJTENS, D STRANKS S, E EPERON G et al. Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. ACS Nano, 8, 7147-7155(2014).

    [2] P FU, Q SHAN, Y SHANG et al. Perovskite nanocrystals: synthesis, properties and applications. Science Bulletin, 62, 369-380(2017).

    [3] G XING, N MATHEWS, S SUN et al. Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 342, 344-347(2013).

    [4] Q DONG, Y FANG, Y SHAO et al. Electron-hole diffusion lengths >175 mm in solution-grown CH3NH3PbI3 single crystals. Science, 347, 967-970(2015).

    [5] S DE WOLF, J HOLOVSKY, J MOON S et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. Journal of Physical Chemistry Letters, 5, 1035-1039(2014).

    [6] G PARK N. Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 18, 65-72(2015).

    [7] J JEONG, M KIM, J SEO et al. Pseudo-halide anion engineering for alpha-FAPbI3 perovskite solar cells. Nature, 592, 381-385(2021).

    [8] X LUO, T DING, X LIU et al. Quantum-cutting luminescent solar concentrators using ytterbium-doped perovskite nanocrystals. Nano Letters, 19, 338-341(2019).

    [9] T CAI, J WANG, W LI et al. Mn2+/Yb3+ codoped CsPbCl3 perovskite nanocrystals with triple-wavelength emission for luminescent solar concentrators. Advanced Science, 7, 2001317(2020).

    [10] H ZHAO, R SUN, Z WANG et al. Zero-dimensional perovskite nanocrystals for efficient luminescent solar concentrators. Advanced Functional Materials, 29, 1902262(2019).

    [11] J YOO J, G SEO, R CHUA M et al. Efficient perovskite solar cells via improved carrier management. Nature, 590, 587-593(2021).

    [12] Q ZHAO, A HAZARIKA, X CHEN et al. High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nature Communications, 10, 2842(2019).

    [13] M HAO, Y BAI, S ZEISKE et al. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1-xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nature Energy, 5, 79-88(2020).

    [14] A KOJIMA, K TESHIMA, Y SHIRAI et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131, 6050-6051(2009).

    [15] H IM J, R LEE C, W LEE J et al. 6.5% efficient perovskite quantum- dot-sensitized solar cell. Nanoscale, 3, 4088-4093(2011).

    [16] S KIM H, R LEE C, H IM J et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2, 591(2012).

    [17] M LEE M, J TEUSCHER, T MIYASAKA et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338, 643-647(2012).

    [18] Y LEI, L GU, W HE et al. Intrinsic charge carrier dynamics and device stability of perovskite/ZnO mesostructured solar cells in moisture. Journal of Materials Chemistry A, 4, 5474-5481(2016).

    [19] M BALL J, M LEE M, A HEY et al. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science, 6, 1739-1743(2013).

    [20] D BI, J MOON S, L HÄGGMAN et al. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Advances, 3, 18762-18766(2013).

    [21] F ZHOU, Z LI, H CHEN et al. Application of perovskite nanocrystals (NCs)/quantum dots (QDs) in solar cells. Nano Energy, 73, 104757(2020).

    [22] L MENG, J YOU, F GUO T et al. Recent advances in the inverted planar structure of perovskite solar cells. Accounts of Chemical Research, 49, 155-165(2016).

    [23] A MARCHIORO, J TEUSCHER, D FRIEDRICH et al. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nature Photonics, 8, 250-255(2014).

    [24] R LINABURG M, T MCCLURE E, D MAJHER J et al. Cs1-xRbxPbCl3 and Cs1-xRbxPbBr3 solid solutions: understanding octahedral tilting in lead halide perovskites. Chemistry of Materials, 29, 3507-3514(2017).

    [25] H CHO, H KIM Y, C WOLF et al. Improving the stability of metal halide perovskite materials and light-emitting diodes. Advanced Materials, 30, 1704587(2018).

    [26] A HAZARIKA, Q ZHAO, A GAULDING E et al. Perovskite quantum dot photovoltaic materials beyond the reach of thin films: full-range tuning of A-Site cation composition. ACS Nano, 12, 10327-10337(2018).

    [27] C SMITH I, T HOKE E, D SOLIS-IBARRA et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angewandte Chemie International Edition, 53, 11232-11235(2014).

    [28] N ZHOU, Y SHEN, L LI et al. Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells. Journal of the American Chemical Society, 140, 459-465(2018).

    [29] J XUE, W LEE J, Z DAI et al. Surface ligand management for stable FAPbI3 perovskite quantum dot solar Cells. Joule, 2, 1866-1878(2018).

    [30] K JI, J YUAN, F LI et al. High-efficiency perovskite quantum dot solar cells benefiting from a conjugated polymer-quantum dot bulk heterojunction connecting layer. Journal of Materials Chemistry A, 8, 8104-8112(2020).

    [31] X SHEN, Y ZHANG, V KERSHAW S et al. Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices. Nano Letters, 19, 1552-1559(2019).

    [32] Y JIANG, J YUAN, Y NI et al. Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule, 2, 1356-1368(2018).

    [33] J CHEN, D JIA, E M J JOHANSSON et al. Emerging perovskite quantum dot solar cells: feasible approaches to boost performance. Energy & Environmental Science, 14, 224-261(2021).

    [34] J JEON N, H NOH J, S YANG W et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517, 476-480(2015).

    [35] C WANG, D ZHAO, Y YU et al. Compositional and morphological engineering of mixed cation perovskite films for highly efficient planar and flexible solar cells with reduced hysteresis. Nano Energy, 35, 223-232(2017).

    [36] J YE, M BYRANVAND M, O MARTINEZ C et al. Defect passivation in lead-halide perovskite nanocrystals and thin films: toward efficient LEDs and solar cells. Angewandte Chemie International Edition, 60, 21636-21660(2021).

    [37] A AKKERMAN Q, G RAINO, V KOVALENKO M et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nature Materials, 17, 394-405(2018).

    [38] K KUMAWAT N, D GUPTA, D KABRA. Recent advances in metal halide-based perovskite light-emitting diodes. Energy Technology, 5, 1734-1749(2017).

    [39] Q CHEN, N DE MARCO, Y YANG et al. Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 10, 355-396(2015).

    [40] M AZPIROZ J, E MOSCONI, J BISQUERT et al. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy & Environmental Science, 8, 2118-2127(2015).

    [41] A SWARNKAR, J MIR W, A NAG. Can B-site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (X= Cl, Br, I) perovskites?. ACS Energy Letters, 3, 286-289(2018).

    [42] Y WANG, J TU, T LI et al. Convenient preparation of CsSnI3 quantum dots, excellent stability, and the highest performance of lead- free inorganic perovskite solar cells so far. Journal of Materials Chemistry A, 7, 7683-7690(2019).

    [43] M LIU, H PASANEN, H ALI-LOYTTY et al. B-site co-alloying with germanium improves the efficiency and stability of all-inorganic tin-based perovskite nanocrystal solar cells. Angewandte Chemie International Edition, 59, 22117-22125(2020).

    [44] R AHMAD, V NUTAN G, D SINGH et al. Colloidal lead-free Cs2AgBiBr6 double perovskite nanocrystals: synthesis, uniform thin-film fabrication, and application in solution-processed solar cells. Nano Research, 14, 1126-1134(2020).

    [45] J ZHANG, Z JIN, L LIANG et al. Iodine-optimized interface for inorganic CsPbI2Br perovskite solar cell to attain high stabilized efficiency exceeding 14%. Advanced Science, 5, 1801123(2018).

    [46] K CHEN, Q ZHONG, W CHEN et al. Short-chain ligand-passivated stable α-CsPbI3 quantum dot for all-inorganic perovskite solar cells. Advanced Functional Materials, 29, 1900991(2019).

    [47] H BIAN, D BAI, Z JIN et al. Graded bandgap CsPbI2+xBr1-x perovskite solar cells with a stabilized efficiency of 14.4%. Joule, 2, 1500-1510(2018).

    [48] J YUAN, C BI, S WANG et al. Spray-coated colloidal perovskite quantum dot films for highly efficient solar cells. Advanced Functional Materials, 29, 1906615(2019).

    [49] C LIU, Q ZENG, Y ZHAO et al. Surface ligands management for efficient CsPbBrI2 perovskite nanocrystal solar cells. Solar RRL, 4, 2000102(2020).

    [50] J LI, L XU, T WANG et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Advanced Materials, 29, 1603885(2017).

    [51] T CHIBA, K HOSHI, J PU Y et al. High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment. ACS Applied Materials & Interfaces, 9, 18054-18060(2017).

    [52] D JIA, J CHEN, M YU et al. Dual passivation of CsPbI3 perovskite nanocrystals with amino acid ligands for efficient quantum dot solar cells. Small, 16, 2001772(2020).

    [53] M WHEELER L, M SANEHIRA E, R MARSHALL A et al. Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. Journal of the American Chemical Society, 140, 10504-10513(2018).

    [54] J KIM, S CHO, F DINIC et al. Hydrophobic stabilizer-anchored fully inorganic perovskite quantum dots enhance moisture resistance and photovoltaic performance. Nano Energy, 75, 104985(2020).

    [55] M SANEHIRA E, R MARSHALL A, A CHRISTIANS J et al. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Science Advances, 3, eaao4204(2017).

    [56] X LING, S ZHOU, J YUAN et al. 14.1% CsPbI3 perovskite quantum dot solar cells via cesium cation passivation. Advanced Energy Materials, 9, 1900721(2019).

    [57] X LING, J YUAN, X ZHANG et al. Guanidinium-assisted surface matrix engineering for highly efficient perovskite quantum dot photovoltaics. Advanced Materials, 32, 2001906(2020).

    [58] F LI, S ZHOU, J YUAN et al. Perovskite quantum dot solar cells with 15.6% efficiency and improved stability enabled by an α-CsPbI3/ FAPbI3 bilayer structure. ACS Energy Letters, 4, 2571-2578(2019).

    [59] Y PARK S, C SHIM H. Highly efficient and air-stable heterostructured perovskite quantum dot solar cells using a solid-state cation- exchange reaction. ACS Applied Materials & Interfaces, 12, 57124-57133(2020).

    [60] J XUE, R WANG, L CHEN et al. A small-molecule "charge driver" enables perovskite quantum dot solar cells with efficiency approaching 13%. Advanced Materials, 31, 1900111(2019).

    [61] A GAULDING E, J HAO, S KANG H et al. Conductivity tuning via doping with electron donating and withdrawing molecules in perovskite CsPbI3 nanocrystal films. Advanced Materials, 31, 1902250(2019).

    [62] S WANG, C BI, A PORTNIAGIN et al. CsPbI3/PbSe heterostructured nanocrystals for high-efficiency solar cells. ACS Energy Letters, 5, 2401-2410(2020).

    [63] C DING, F LIU, Y ZHANG et al. Photoexcited hot and cold electron and hole dynamics at FAPbI3 perovskite quantum dots/metal oxide heterojunctions used for stable perovskite quantum dot solar cells. Nano Energy, 67, 104267(2020).

    [64] Q WANG, Z JIN, D CHEN et al. µ-Graphene crosslinked CsPbI3 quantum dots for high efficiency solar cells with much improved stability. Advanced Energy Materials, 8, 1800007(2018).

    [65] K CHEN, W JIN, Y ZHANG et al. High efficiency mesoscopic solar cells using CsPbI3 perovskite quantum dots enabled by chemical interface engineering. Journal of the American Chemical Society, 142, 3775-3783(2020).

    [66] L XIONG, Y GUO, J WEN et al. Review on the application of SnO2 in perovskite solar cells. Advanced Functional Materials, 28, 1802757(2018).

    [67] Q JIANG, L ZHANG, H WANG et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3- based perovskite solar cells. Nature Energy, 2, 16177(2016).

    [68] S LIM, J KIM, Y PARK J et al. Suppressed degradation and enhanced performance of CsPbI3 perovskite quantum dot solar cells via engineering of electron transport layers. ACS Applied Materials & Interfaces, 13, 6119-6129(2021).

    [69] B SHIVARUDRAIAH S, M NG, C H A LI et al. All-inorganic, solution-processed, inverted CsPbI3 quantum dot solar cells with a PCE of 13.1% achieved via a layer-by-layer FAI treatment. ACS Applied Energy Materials, 3, 5620-5627(2020).

    [70] X DING, M CAI, X LIU et al. Lead sulfide quantum dots as a bifunctional layer for efficient and stable all-inorganic cesium lead iodide perovskite solar cells. ChemistrySelect, 4, 13143-13148(2019).

    [71] Q ZENG, X ZHANG, X FENG et al. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Advanced Materials, 30, 1705393(2018).

    [72] J YUAN, X LING, D YANG et al. Band-aligned polymeric hole transport materials for extremely low energy loss α-CsPbI3 perovskite nanocrystal solar cells. Joule, 2, 2450-2463(2018).

    [73] N ARORA, I DAR M, A HINDERHOFER et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 358, 768-771(2017).

    [74] A CHRISTIANS J, C FUNG R, V KAMAT P. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. Journal of the American Chemical Society, 136, 758-764(2014).

    [75] G LIU, R MAZZARO, Y WANG et al. High efficiency sandwich structure luminescent solar concentrators based on colloidal quantum dots. Nano Energy, 60, 119-126(2019).

    [76] B MCKENNA, C EVANS R. Towards efficient spectral converters through materials design for luminescent solar devices. Advanced Materials, 29, 1606491(2017).

    [77] J SHU, X ZHANG, P WANG et al. Monte-Carlo simulations of optical efficiency in luminescent solar concentrators based on all- inorganic perovskite quantum dots. Physica B: Condensed Matter, 548, 53-57(2018).

    [78] H ZHAO, Y ZHOU, D BENETTI et al. Perovskite quantum dots integrated in large-area luminescent solar concentrators. Nano Energy, 37, 214-223(2017).

    [79] H ZHAO, D BENETTI, X TONG et al. Efficient and stable tandem luminescent solar concentrators based on carbon dots and perovskite quantum dots. Nano Energy, 50, 756-765(2018).

    [80] A COHEN T, J MILSTEIN T, M KROUPA D et al. Quantum- cutting Yb3+-doped perovskite nanocrystals for monolithic bilayer luminescent solar concentrators. Journal of Materials Chemistry A, 7, 9279-9288(2019).

    [81] J TONG, J LUO, L SHI et al. Fabrication of highly emissive and highly stable perovskite nanocrystal-polymer slabs for luminescent solar concentrators. Journal of Materials Chemistry A, 7, 4872-4880(2019).

    [82] J WU, J TONG, Y GAO et al. Efficient and stable thin-film luminescent solar concentrators enabled by near-infrared emission perovskite nanocrystals. Angewandte Chemie International Edition, 132, 7812-7816(2020).

    Fengjuan ZHANG, Boning HAN, Haibo ZENG. Perovskite Quantum Dot Photovoltaic and Luminescent Concentrator Cells: Current Status and Challenges[J]. Journal of Inorganic Materials, 2021, 37(2): 117
    Download Citation