• Journal of Inorganic Materials
  • Vol. 36, Issue 12, 1290 (2021)
Wenjin ZHANG*, Qianqian SHEN, Jinbo XUE, Qi LI, Xuguang LIU, and Husheng JIA
DOI: 10.15541/jim20210175 Cite this Article
Wenjin ZHANG, Qianqian SHEN, Jinbo XUE, Qi LI, Xuguang LIU, Husheng JIA. Preparation and Photoelectrochemical Water Oxidation of Hematite Nanobelts Containing Highly Ordered Oxygen Vacancies[J]. Journal of Inorganic Materials, 2021, 36(12): 1290 Copy Citation Text show less
References

[1] FUJISHIMA AKIRA, HONDA KENICHI. Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37-38(1972). https://doi.org/10.1038/238037a0

[2] YONG LI, JINBO XUE, QIANQIAN SHEN et al. Construction of a ternary spatial junction in yolk-shell nanoreactor for efficient photo-thermal catalytic hydrogen generation. Chemical Engineering Journal, 423, 130188(2021). https://linkinghub.elsevier.com/retrieve/pii/S1385894721017769

[3] JIAQI GAO, JINBO XUE, SHUFANG JIA et al. Self-doping surface oxygen vacancy-induced lattice strains for enhancing visible light-driven photocatalytic H-2 evolution over black TiO2. ACS Applied Materials & Interface, 13, 18758-18771(2021).

[4] QIANQIAN SHEN, JINBO XUE, YONG LI et al. Construction of CdSe polymorphic junctions with coherent interface for enhanced photoelectrocatalytic hydrogen generation. Applied Catalysis B: Environmental, 282, 119552(2021). https://linkinghub.elsevier.com/retrieve/pii/S092633732030967X

[5] SIVULA KEVIN, FORMAL FLORIAN LE, GRATZEL MICHAEL. Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem, 4, 432-449(2011). https://onlinelibrary.wiley.com/doi/10.1002/cssc.201000416

[6] ZHUJUN ZHANG, NAGASHIMA HIROKI, TACHIKAWA TAKASHI. Ultra-narrow depletion layers in a hematite mesocrystal-based photoanode for boosting multihole water oxidation. Angewandte Chemie International Edition, 59, 2-10(2020). https://onlinelibrary.wiley.com/toc/15213773/59/1

[7] CHENGCHENG LI, ZHIBIN LUO, TUO WANG et al. Surface, bulk, and interface: rational design of hematite architecture toward efficient photo-electrochemical water splitting. Advanced Materials, 30, 1707502(2018). http://doi.wiley.com/10.1002/adma.v30.30

[8] XIAOYAN HAO, LIXIA JIA, CHENGYU HE et al. A general strategy for the preparation of semiconductor-oxide-nanowire photoanodes. Journal of Power Sources, 438, 226952(2019). https://linkinghub.elsevier.com/retrieve/pii/S0378775319309450

[9] XUEQING ZHANG, PETER KLAVER, RUTGER SANTEN VAN et al. Oxygen evolution at hematite surfaces: the impact of structure and oxygen vacancies on lowering the overpotential. Journal of Physical Chemistry C, 120, 18201-18208(2016). https://pubs.acs.org/doi/10.1021/acs.jpcc.6b07228

[10] LEI WANG, JIE ZHU, XIANHU LIU. Oxygen-vacancy- dominated cocatalyst/hematite interface for boosting solar water splitting. ACS Applied Materials & Interfaces, 11, 22272-22277(2019).

[11] LIANZHOU WANG, ZHILIANG WANG, XIN MAO et al. Understanding the roles of oxygen vacancies in hematite based photoelectrochemical process. Angewandte Chemie International Edition, 58, 1030-1034(2019). https://onlinelibrary.wiley.com/toc/15213773/58/4

[12] MINGSHANG JIN, HUI ZHANG, ZHAOXIONG XIE et al. Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Angewandte Chemie International Edition, 50, 7850-7854(2011). http://doi.wiley.com/10.1002/anie.v50.34

[13] ZHONGYUAN ZHOU, SHAOLONG WU, LINLING QIN et al. Modulating oxygen vacancies in Sn-doped hematite film grown on silicon microwires for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 6, 15593-15602(2018). http://xlink.rsc.org/?DOI=C8TA03643H

[14] KAN ZHANG, SANDHEEP RAVISHANKAR, MING MA et al. Overcoming charge collection limitation at solid/liquid interface by a controllable crystal deficient overlayer. Advanced Energy Materials, 7, 1600923(2017). https://onlinelibrary.wiley.com/doi/10.1002/aenm.201600923

[15] LEI WANG, XUEMEI ZHOU, NHAT NGUYEN TRUONG et al. Plasmon-enhanced photoelectrochemical water splitting using Au nanoparticles decorated on hematite nanoflake arrays. ChemSusChem, 8, 618-622(2015). http://doi.wiley.com/10.1002/cssc.v8.4

[16] YUNAN YI, QIANBAO WU, WEI WANG et al. In situ depositing an ultrathin CoOxHy layer on hematite in alkaline media for photoelectrochemical water oxidation. Applied Catalysis B: Environmental, 263, 118334(2020). https://linkinghub.elsevier.com/retrieve/pii/S092633731931080X

[17] DONG CHEN, ZHIFENG LIU, SHAOCE ZHANG. Enhanced PEC performance of hematite photoanode coupled with bimetallic oxyhydroxide NiFeOOH through a simple electroless method. Applied Catalysis B: Environmental, 265, 118580(2020). https://linkinghub.elsevier.com/retrieve/pii/S0926337319313268

[18] MANIVANNAN SHANMUGAM, AN SEONGHWI, JEONG JUWON et al. Hematite/M (M=Au, Pd) catalysts derived from a double-hollow Prussian blue microstructure: simultaneous catalytic reduction of o- and p-nitrophenols. ACS Applied Materials & Interfaces, 12, 17557-17570(2020).

[19] BIAO XU, HAO YANG, GANG ZHOU et al. Strong metal- support interaction in size-controlled monodisperse palladium- hematite nano-heterostructures during a liquid-solid heterogeneous catalysis. Science China Materials, 57, 34-41(2014). http://link.springer.com/10.1007/s40843-014-0001-3

[20] LUYANG WANG, YUAN LU, NANNAN HAN et al. Suppressing water dissociation via control of intrinsic oxygen defects for awakening solar H2O-to-H2O2 generation. Small, 17, 2100400(2021). https://onlinelibrary.wiley.com/toc/16136829/17/13

Wenjin ZHANG, Qianqian SHEN, Jinbo XUE, Qi LI, Xuguang LIU, Husheng JIA. Preparation and Photoelectrochemical Water Oxidation of Hematite Nanobelts Containing Highly Ordered Oxygen Vacancies[J]. Journal of Inorganic Materials, 2021, 36(12): 1290
Download Citation