• Photonics Research
  • Vol. 5, Issue 3, 239 (2017)
Cong Wang1、2, Bing Wang2, Riko I. Made2, Soon-Fatt Yoon1、2, and Jurgen Michel2、3、*
Author Affiliations
  • 1School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • 2Low Energy Electronic Systems, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
  • 3Department of Materials Science and Engineering, Massachusetts Institute of Technology, Massachusetts 02139, USA
  • show less
    DOI: 10.1364/PRJ.5.000239 Cite this Article Set citation alerts
    Cong Wang, Bing Wang, Riko I. Made, Soon-Fatt Yoon, Jurgen Michel. Direct bandgap photoluminescence from n-type indirect GaInP alloys[J]. Photonics Research, 2017, 5(3): 239 Copy Citation Text show less
    References

    [1] S. Tomasulo, K. Nay Yaung, J. Faucher, M. Vaisman, M. L. Lee. Metamorphic 2.1–2.2  eV InGaP solar cells on GaP substrates. Appl. Phys. Lett., 104, 173903(2014).

    [2] M. J. Mori, S. T. Boles, E. A. Fitzgerald. Comparison of compressive and tensile relaxed composition-graded GaAsP and (Al)InGaP substrates. J. Vac. Sci. Technol. A, 28, 182-188(2010).

    [3] K. Alberi, B. Fluegel, M. A. Steiner, R. France, W. Olavarria, A. Mascarenhas. Direct-indirect crossover in GaxIn1−xP alloys. J. Appl. Phys., 110, 113701(2011).

    [4] Y. Zhang, C.-S. Jiang, D. J. Friedman, J. F. Geisz, A. Mascarenhas. Tailoring the electronic properties of GaxIn1−xP beyond simply varying alloy composition. Appl. Phys. Lett., 94, 091113(2009).

    [5] Y. Ishitani, H. Yaguchi, Y. Shiraki. Temperature dependence of excitonic Γc–Γv transition energies of GaxIn1−xP crystals. Jpn. J. Appl. Phys., 40, 1183-1187(2001).

    [6] R. Mueller-Mach, G. O. Mueller, M. R. Krame, O. B. Shchekin, P. J. Schmidt, H. Bechtel, C.-H. Chen, O. Steigelmann. All nitride monochromatic amber emitting phosphor converted light emitting diodes. Phys. Status Solidi, 3, 7-8(2009).

    [7] M. J. Mori. Lattice mismatched epitaxy of heterostructures for non-nitride green light emitting devices(2008).

    [8] S. J. Chang, C. S. Chang, Y. K. Su, P. T. Chang, Y. R. Wu, K. H. Huang, T. P. Chen. AlGaInP yellow-green light-emitting diodes with a tensile strain barrier cladding layer. IEEE Photon. Technol. Lett., 9, 1199-1201(1997).

    [9] G. Oelgart, R. Schwabe, M. Heider, B. Jacobs. Photoluminescence of AlxGa1−xAs near the Γ-X crossover. Semicond. Sci. Technol., 2, 468-474(1987).

    [10] J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, J. Michel. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Opt. Express, 15, 11272-11277(2007).

    [11] X. Sun, J. Liu, L. C. Kimerling, J. Michel. Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. Opt. Lett., 34, 1198-1200(2009).

    [12] B. Wang, C. Wang, D. A. Kohen, R. I. Made, K. E. K. Lee, T. Kim, T. Milakovich, E. A. Fitzgerald, S. F. Yoon, J. Michel. Direct MOCVD epitaxy of GaAsP on SiGe virtual substrate without growth of SiGe. J. Cryst. Growth, 441, 78-83(2016).

    [13] K. N. Yaung, S. Tomasulo, J. R. Lang, J. Faucher, M. L. Lee. Defect selective etching of GaAsyP1–y photovoltaic materials. J. Cryst. Growth, 404, 140-145(2014).

    [14] I. García, I. Rey-Stolle, B. Galiana, C. Algora. Analysis of tellurium as n-type dopant in GaInP: Doping, diffusion, memory effect and surfactant properties. J. Cryst. Growth, 298, 794-799(2007).

    [15] M. Steiner, L. Bhusal, J. Geisz. CuPt ordering in high bandgap GaxIn1−xP alloys on relaxed GaAsP step grades. J. Appl. Phys., 106, 063525(2009).

    [16] M. J. Mori, E. A. Fitzgerald. Microstructure and luminescent properties of novel InGaP alloys on relaxed GaAsP substrates. J. Appl. Phys., 105, 013107(2009).

    [17] S. Jun, G. Stringfellow, A. Howard. Kinetics of Te doping in disodering GaInP grown by organometallic vapor phase epitaxy. J. Appl. Phys., 90, 6048-6053(2001).

    [18] M. Guzzi, E. Grilli, S. Oggioni, J. L. Staehli, C. Bosio, L. Pavesi. Indirect-energy-gap dependence on Al concentration in AlxGa1−xAs alloys. Phys. Rev. B, 45, 10951-10957(1992).

    [19] Y. P. Varshni. Temperature dependence of the energy gap in semiconductors. Physica, 34, 149-154(1967).

    [20] L. Pavesi, M. Guzzi. Photoluminescence of AlxGa1−xAs alloys. J. Appl. Phys., 75, 4779(1994).

    [21] X. Sun, J. Liu, L. Kimerling, J. Michel. Direct gap photoluminescence of n-type tensile-strained Ge-on-Si. Appl. Phys. Lett., 95, 011911(2009).

    [22] S. C. Jain, D. J. Roulston. A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1−x strained layers. Solid State Electron., 34, 453-465(1991).

    [23] C. Yang, S. Lee, K. Shin, S. Oh, J. Park. Growth of Si-doped GaInP on Ge-on-Si substrates and its photoluminescence characteristics. Appl. Phys. Lett., 99, 091904(2011).

    [24] T. Yokogawa, T. Taguchi, S. Fujita, M. Satoh, M. Satoh. Intense blue-emission band and the fabrication of blue light emitting diodes in I-doped and Ag-ion-implanted cubic ZnS. IEEE Trans. Electron. Devices, 30, 271-277(1983).

    [25] H. Shibata. Negative thermal quenching curves in photoluminescence of solids. Jpn. J. Appl. Phys., 37, 550-553(1998).

    [26] R. Camacho-Aguilera, Z. Han, Y. Cai, L. C. Kimerling, J. Michel. Direct band gap narrowing in highly doped Ge. Appl. Phys. Lett., 102, 152106(2013).

    [27] Y. Zhang, A. Mascarenhas, L. Wang. Interplay of alloying and ordering on the electronic structure of GaxIn1−xP alloys. Phys. Rev. B, 78, 235202(2008).

    [28] A. G. Sigai, C. J. Nuese, R. E. Enstrom, T. Zamerowski. Vapor growth of In1−xGaxP for P-N junction electroluminescence. J. Electrochem. Soc., 120, 947-955(1973).

    [29] G. E. Zardas, C. I. Symeonides, P. C. Euthymiou, G. J. Papaioannou, P. H. Yannakopoulos, M. Vesely. Electron irradiation induced defects in undoped and Te doped gallium phosphide. Solid State Commun., 145, 332-336(2008).

    Cong Wang, Bing Wang, Riko I. Made, Soon-Fatt Yoon, Jurgen Michel. Direct bandgap photoluminescence from n-type indirect GaInP alloys[J]. Photonics Research, 2017, 5(3): 239
    Download Citation