• Laser & Optoelectronics Progress
  • Vol. 57, Issue 5, 051404 (2020)
Xiaotian Ji, Xingquan Zhang*, Lisheng Zuo, Tao Wang, Shanbao Pei, and Guotao Zhang
Author Affiliations
  • School of Mechanical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
  • show less
    DOI: 10.3788/LOP57.051404 Cite this Article Set citation alerts
    Xiaotian Ji, Xingquan Zhang, Lisheng Zuo, Tao Wang, Shanbao Pei, Guotao Zhang. Precise Set for Loading Region in Numerical Simulation of Laser Shocking Peening[J]. Laser & Optoelectronics Progress, 2020, 57(5): 051404 Copy Citation Text show less
    References

    [1] Sun R J, Li L H, Zhu Y et al. Effect of laser shock peening on microstructure and tensile properties of TC17 titanium alloy[J]. Rare Metal Materials and Engineering, 48, 491-499(2019).

    [2] Sun R J, Zhu Y, Guo W et al. Effect of laser shock processing on surface morphology and residual stress field of TC17 titanium alloy by FEM method[J]. Journal of Plasticity Engineering, 24, 187-193(2017).

    [3] Li X, He W F, Nie X F et al. Regularity of residual stress distribution in titanium alloys induced by laser shock peening with different energy spatial distributions[J]. Laser & Optoelectronics Progress, 55, 061402(2018).

    [4] Jiang C Y, Wang C Y, Luo K Y et al. Effects of laser shock layer number and Cl-concentration on anticorrosion behaviors of AM50 Mg alloys[J]. Chinese Journal of Lasers, 45, 0902004(2018).

    [5] Ning C Y, Huang Y H, Zhang G Y et al. Wear resistance and electrochemical properties of 6061 aluminum alloys treated by laser shock peening[J]. Laser & Optoelectronics Progress, 55, 061403(2018).

    [6] Ren X D, Zhang Y K, Yongzhuo H F et al. Effect of laser shock processing on the fatigue crack initiation and propagation of 7050-T7451 aluminum alloy[J]. Materials Science and Engineering A, 528, 2899-2903(2011).

    [7] Zhang X, Li L, Qi X et al. Experimental and numerical investigation of fatigue crack growth in the cracked gear tooth[J]. Fatigue & Fracture of Engineering Materials & Structures, 40, 1037-1047(2017).

    [8] Huang S, Zhou J Z, Sheng J et al. Effects of laser peening with different coverage areas on fatigue crack growth properties of 6061-T6 aluminum alloy[J]. International Journal of Fatigue, 47, 292-299(2013).

    [9] Zhang X Q, Li H, Yu X L et al. Investigation on effect of laser shock processing on fatigue crack initiation and its growth in aluminum alloy plate[J]. Materials & Design (1980--2015), 65, 425-431(2015).

    [10] Li D L, He W F, You X et al. Experimental research on improving fatigue strength of wounded TC4 titanium alloy by laser shock peening[J]. Chinese Journal of Lasers, 43, 0702006(2016).

    [11] Chai Y, Ren J, He W F et al. Effect of laser shock processing on the fatigue property of K4030 alloy blade[J]. Laser & Optoelectronics Progress, 51, 011405(2014).

    [12] Zhang J, Gu X, Zhu L et al. Numerical simulation of fatigue life of 7050 aluminum alloy processed by laser shock processing[J]. Chinese Journal of Lasers, 37, 3192-3195(2010).

    [13] Wu W, Liang N G, Yu G et al. Numerical simulation of pulsed laser surface hardening and the influence of material thermophysical parameters on hardened zone[J]. Chinese Journal of Lasers, 32, 707-712(2005).

    [14] Zhang X Q, Huang Z W, Chen B et al. Investigation on residual stress distribution in thin plate subjected to two sided laser shock processing[J]. Optics & Laser Technology, 111, 146-155(2019).

    [15] Zhou J Z, Yang X D, Huang S et al. Residual stress field of ZK60 specimen with central hole induced by both-side laser shot peening[J]. Chinese Journal of Lasers, 37, 1850-1855(2010).

    [16] Zhang X Q, Li H, Duan S W et al. Modeling of residual stress field induced in Ti-6Al-4V alloy plate by two sided laser shock processing[J]. Surface and Coatings Technology, 280, 163-173(2015).

    [17] Brockman R A, Braisted W R, Olson S E et al. Prediction and characterization of residual stresses from laser shock peening[J]. International Journal of Fatigue, 36, 96-108(2012).

    [18] Hu Y, Yang R Y, Wang D Y et al. Geometry distortion and residual stress of alternate double-sided laser peening of thin section component[J]. Journal of Materials Processing Technology, 251, 197-204(2018).

    [19] Liu S W, Guo D H, Wang S B et al. Effects of experimental parameters on LSP[J]. Chinese Journal of Lasers, 27, 937-940(2000).

    [20] Johnson G R. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures. [C]//Proceedings of the 7th International Symposium on Ballistics, April 19-21, 1983, The Hague, Netherlands. [S.l.: s.n.], 541-547(1983).

    [21] Fabbro R, Fournier J, Ballard P et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 68, 775-784(1990).

    Xiaotian Ji, Xingquan Zhang, Lisheng Zuo, Tao Wang, Shanbao Pei, Guotao Zhang. Precise Set for Loading Region in Numerical Simulation of Laser Shocking Peening[J]. Laser & Optoelectronics Progress, 2020, 57(5): 051404
    Download Citation