• Laser & Optoelectronics Progress
  • Vol. 59, Issue 5, 0500001 (2022)
Chao Wan1, Hao Hao2, Qingyuan Zhao1、2、*, Hao Liu1, Cong Li3, Te Chen3, Guixing Cao3, Xuecou Tu1、2, Labao Zhang1、2, Xiaoqing Jia1、2, Lin Kang1、2, Jian Chen1、2, Huabing Wang1、2, and Peiheng Wu1、2
Author Affiliations
  • 1Purple Mountain Laboratories, Nanjing , Jiangsu 211111, China
  • 2Research Institute of Superconductor Electronics, Nanjing University, Nanjing , Jiangsu 210023, China
  • 3Institute of Telecommunication and Navigation Satellites, China Academy of Space Technology, Beijing 100094, China
  • show less
    DOI: 10.3788/LOP202259.0500001 Cite this Article Set citation alerts
    Chao Wan, Hao Hao, Qingyuan Zhao, Hao Liu, Cong Li, Te Chen, Guixing Cao, Xuecou Tu, Labao Zhang, Xiaoqing Jia, Lin Kang, Jian Chen, Huabing Wang, Peiheng Wu. Application of Single Photon Detection in Wireless Optical Communication Transceiver Technology[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0500001 Copy Citation Text show less
    References

    [1] Wang T S, Lin P, Dong F et al. Progress and prospect of space laser communication technology[J]. Strategic Study of CAE, 22, 92-99(2020).

    [2] Bai S, Wang J Y, Zhang L et al. Development progress and trends of space optical communications[J]. Laser & Optoelectronics Progress, 52, 070001(2015).

    [3] Wilson K E. An overview of the GOLD experiment between the ETS-6 satellite and the Table Mountain facility[R](1996).

    [4] Toyoshima M, Araki K, Arimoto Y et al. Reduction of ETS-VI laser communication equipment optical-downlink telemetry collected during GOLD[R](1996).

    [5] Jono T, Takayama Y, Ohinata K et al. Demonstrations of ARTEMIS-OICETS inter-satellite laser communications[C](2006).

    [6] Smutny B, Lange R, Kämpfner H et al. In-orbit verification of optical inter-satellite communication links based on homodyne BPSK[J]. Proceedings of SPIE, 6877, 687702(2008).

    [7] Shi Q Y, Ai Y, Liang H X et al. Analysis and test of balanced detector in coherent optical communication[J]. Science Technology and Engineering, 16, 207-211(2016).

    [8] Juarez J C, Young D W, Sluz J E et al. High-sensitivity DPSK receiver for high-bandwidth free-space optical communication links[J]. Optics Express, 19, 10789-10796(2011).

    [9] Fields R A, Kozlowski D A, Yura H T et al. 5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station[J]. Proceedings of SPIE, 8184, 81840D(2011).

    [10] Seel S, Kämpfner H, Heine F et al. Space to ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook[C], 11943839(2011).

    [11] Zhang L, Guo L H, Liu X N et al. Latest progress and trends of development of space laser communication[J]. Journal of Spacecraft TT&C Technology, 32, 286-293(2013).

    [12] Boroson D M, Robinson B S. The lunar laser communication demonstration: NASA’s first step toward very high data rate support of science and exploration missions[J]. Space Science Reviews, 185, 115-128(2014).

    [13] Boroson D M, Scozzafava J J, Murphy D V et al. The lunar laser communications demonstration (LLCD)[C], 23-28(2009).

    [14] Edwards B L, Israel D, Wilson K et al. Overview of the laser communications relay demonstration project[C](2012).

    [15] Matt S. Superconducting nanowire single photon detectors opportunities for HEP[EB/OL]. https://agenda.hep.wisc.edu/event/1391/contributions/7030/attachments/1675/1887/CPAD_8_December_2019.pdf

    [16] Wu Q Y, Lin C X, Lu B et al. Design and tests of 21 km, 5 Gbps, 0.14 THz wireless communication system[J]. High Power Laser and Particle Beams, 29, 170064(2017).

    [18] Zhou C, Yu X N, Jiang H L et al. Research on atmospheric turbulence suppression methods of near the earth wireless laser communication channels based on APD adaptive gain control[J]. Chinese Journal of Lasers, 49, 0406002(2022).

    [19] Gong X Y, Zhang P, Wu X J et al. Research on influence of aberration and turbulence on performance of 90° space optical hybrid[J]. Acta Photonica Sinica, 50, 0401003(2021).

    [20] Han S, Zhang J, Meng F Y et al. Darkroom weak optical communication based on single photon detection[J]. Journal of Information Engineering University, 18, 679-682(2017).

    [21] Chen J J, Li H L. Research on underwater LED optical communication system based on MDPCM modulation technology[J]. Applied Science and Technology, 48, 42-47(2021).

    [22] Wu Y M, Liu X, Luo G J et al. Research progress and structure system of space optical communication network technology[J]. Optical Communication Technology, 41, 46-49(2017).

    [23] Ren J Y, Sun H Y, Zhang L X et al. Development status of space laser communication and new method of networking[J]. Laser & Infrared, 49, 143-150(2019).

    [24] Wei W, Chen N N, Zhang X H et al. Survey on optical wireless communications for underwater sensor networks[J]. Sensor World, 17, 6-12(2011).

    [27] Zhu S J, Chen X W, Liu X Y et al. Recent progress in and perspectives of underwater wireless optical communication[J]. Progress in Quantum Electronics, 73, 100274(2020).

    [28] Cossu G. Recent achievements on underwater optical wireless communication[J]. Chinese Optics Letters, 17, 100009(2019).

    [29] Fei C, Hong X J, Du J et al. High-speed underwater wireless optical communications: from a perspective of advanced modulation formats[J]. Chinese Optics Letters, 17, 100012(2019).

    [30] Zeng F J, Yang K J, Yan X et al. Research progress on underwater laser communication systems[J]. Laser & Optoelectronics Progress, 58, 0300002(2021).

    [31] Shen C, Guo Y, Oubei H M et al. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate[J]. Optics Express, 24, 25502-25509(2016).

    [32] Shen C, Guo Y J, Sun X B et al. Going beyond 10-meter, Gbit/s underwater optical wireless communication links based on visible lasers[C], 17358916(2017).

    [33] Cossu G, Sturniolo A, Messa A et al. Sea-trial of optical ethernet modems for underwater wireless communications[J]. Journal of Lightwave Technology, 36, 5371-5380(2018).

    [34] Arvanitakis G N, Bian R, McKendry J J D et al. Gb/s underwater wireless optical communications using series-connected GaN micro-LED arrays[J]. IEEE Photonics Journal, 12, 7901210(2019).

    [35] Chen Y, Kong M, Ali T et al. 26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode[J]. Optics Express, 25, 14760-14765(2017).

    [36] Fei C, Zhang J W, Zhang G W et al. Demonstration of 15-m 7.33-Gb/s 450-nm underwater wireless optical discrete multitone transmission using post nonlinear equalization[J]. Journal of Lightwave Technology, 36, 728-734(2018).

    [37] Fei C, Hong X J, Zhang G W et al. 16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization[J]. Optics Express, 26, 34060-34069(2018).

    [38] Hong X J, Fei C, Zhang G W et al. Discrete multitone transmission for underwater optical wireless communication system using probabilistic constellation shaping to approach channel capacity limit[J]. Optics Letters, 44, 558-561(2019).

    [39] Kong M W, Chen Y F, Sarwar R et al. Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal[J]. Optics Express, 26, 3087-3097(2018).

    [40] Shen J N, Wang J L, Chen X et al. Towards power-efficient long-reach underwater wireless optical communication using a multi-pixel photon counter[J]. Optics Express, 26, 23565-23571(2018).

    [41] Wang J L, Yang X Q, Lv W C et al. Underwater wireless optical communication based on multi-pixel photon counter and OFDM modulation[J]. Optics Communications, 451, 181-185(2019).

    [42] Liu X Y, Yi S Y, Zhou X L et al. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation[J]. Optics Express, 25, 27937-27947(2017).

    [43] Chi N, Zhao Y H, Shi M et al. Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system[J]. Optics Express, 26, 26700-26712(2018).

    [44] Wang F M, Liu Y F, Jiang F Y et al. High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception[J]. Optics Communications, 425, 106-112(2018).

    [45] Wang F M, Liu Y F, Shi M et al. 3.075 Gb/s underwater visible light communication utilizing hardware pre-equalizer with multiple feature points[J]. Optical Engineering, 58, 056117(2019).

    [46] Chen H L, Chen X W, Lu J et al. Toward long-distance underwater wireless optical communication based on a high-sensitivity single photon avalanche diode[J]. IEEE Photonics Journal, 12, 7902510(2020).

    [47] Wang J, Lu C, Li S et al. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J]. Optics Express, 27, 12171-12181(2019).

    [48] Lu C H, Wang J M, Li S B et al. 60 m/2.5 Gbps underwater optical wireless communication with NRZ-OOK modulation and digital nonlinear equalization[C], 1-2(2019).

    [49] Lu H H, Li C Y, Lin H H et al. An 8 m/9.6 Gbps underwater wireless optical communication system[J]. IEEE Photonics Journal, 8, 7906107(2016).

    [50] Li C Y, Lu H H, Tsai W S et al. 16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques[J]. Optics Express, 25, 11598-11605(2017).

    [51] Wu T C, Chi Y C, Wang H Y et al. Blue laser diode enables underwater communication at 12.4 Gbps[J]. Scientific Reports, 7, 40480(2017).

    [52] Tsai W S, Lu H H, Wu H W et al. A 30 Gb/s PAM4 underwater wireless laser transmission system with optical beam reducer/expander[J]. Scientific Reports, 9, 8605(2019).

    [53] Hu S, Mi L, Zhou T et al. 35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM[J]. Optics Express, 26, 21685-21699(2018).

    [54] Ghassemlooy Z, Popoola W, Rajbhandari S[M]. Optical wireless communications: system and channel modelling with MATLAB(2018).

    [55] Ferrari S, Schuck C, Pernice W. Waveguide-integrated superconducting nanowire single-photon detectors[J]. Nanophotonics, 7, 1725-1758(2018).

    [56] Tao X, Hao H, Li X et al. Characterize the speed of a photon-number-resolving superconducting nanowire detector[J]. IEEE Photonics Journal, 12, 4501308(2020).

    Chao Wan, Hao Hao, Qingyuan Zhao, Hao Liu, Cong Li, Te Chen, Guixing Cao, Xuecou Tu, Labao Zhang, Xiaoqing Jia, Lin Kang, Jian Chen, Huabing Wang, Peiheng Wu. Application of Single Photon Detection in Wireless Optical Communication Transceiver Technology[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0500001
    Download Citation