• Laser & Optoelectronics Progress
  • Vol. 59, Issue 5, 0500001 (2022)
Chao Wan1, Hao Hao2, Qingyuan Zhao1、2、*, Hao Liu1, Cong Li3, Te Chen3, Guixing Cao3, Xuecou Tu1、2, Labao Zhang1、2, Xiaoqing Jia1、2, Lin Kang1、2, Jian Chen1、2, Huabing Wang1、2, and Peiheng Wu1、2
Author Affiliations
  • 1Purple Mountain Laboratories, Nanjing , Jiangsu 211111, China
  • 2Research Institute of Superconductor Electronics, Nanjing University, Nanjing , Jiangsu 210023, China
  • 3Institute of Telecommunication and Navigation Satellites, China Academy of Space Technology, Beijing 100094, China
  • show less
    DOI: 10.3788/LOP202259.0500001 Cite this Article Set citation alerts
    Chao Wan, Hao Hao, Qingyuan Zhao, Hao Liu, Cong Li, Te Chen, Guixing Cao, Xuecou Tu, Labao Zhang, Xiaoqing Jia, Lin Kang, Jian Chen, Huabing Wang, Peiheng Wu. Application of Single Photon Detection in Wireless Optical Communication Transceiver Technology[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0500001 Copy Citation Text show less
    Optical communication link between ETS-VI and ground station[3]
    Fig. 1. Optical communication link between ETS-VI and ground station[3]
    Optical communication link between ARTEMIS and OICETS[5]
    Fig. 2. Optical communication link between ARTEMIS and OICETS[5]
    Optical communication terminal on TerraSAR-X and NFIRE [6]
    Fig. 3. Optical communication terminal on TerraSAR-X and NFIRE [6]
    Schematic diagram of coherent detection[7]
    Fig. 4. Schematic diagram of coherent detection[7]
    Optical communication link of LLCD[12]
    Fig. 5. Optical communication link of LLCD[12]
    SNSPD array used in the LLGT optical receiver[13]
    Fig. 6. SNSPD array used in the LLGT optical receiver[13]
    Relevant reports about DSOC. (a) Optical communication link of DSOC; (b) SNSPD array layout for the ground station; (c) free space optical coupling method[15]
    Fig. 7. Relevant reports about DSOC. (a) Optical communication link of DSOC; (b) SNSPD array layout for the ground station; (c) free space optical coupling method[15]
    Underwater optical communication experiment of KAUST. (a) Experimental system; (b) test results of BER and communication rate[31]
    Fig. 8. Underwater optical communication experiment of KAUST. (a) Experimental system; (b) test results of BER and communication rate[31]
    Scheme and picture of the underwater optical communication terminal of SSSUP[33]
    Fig. 9. Scheme and picture of the underwater optical communication terminal of SSSUP[33]
    Underwater optical communication experimental system of US[34]
    Fig. 10. Underwater optical communication experimental system of US[34]
    Underwater optical communication experimental system of ZJU[35]
    Fig. 11. Underwater optical communication experimental system of ZJU[35]
    Underwater optical communication experimental system using MPPC of ZJU[40]
    Fig. 12. Underwater optical communication experimental system using MPPC of ZJU[40]
    Underwater optical communication experimental system using SPAD of FU[46]
    Fig. 13. Underwater optical communication experimental system using SPAD of FU[46]
    Underwater optical communication experimental system based on photon counting of SIOM[53]
    Fig. 14. Underwater optical communication experimental system based on photon counting of SIOM[53]
    High-speed series nanowire superconducting single-photon detector from Nanjing University. (a) Device structure; (b) equivalent circuit model[56]
    Fig. 15. High-speed series nanowire superconducting single-photon detector from Nanjing University. (a) Device structure; (b) equivalent circuit model[56]
    Simulation results between BER and average photon number based on SND and conventional SNSPD under same conditions
    Fig. 16. Simulation results between BER and average photon number based on SND and conventional SNSPD under same conditions
    System diagram of single photon communication research conducted by Nanjing University and PML
    Fig. 17. System diagram of single photon communication research conducted by Nanjing University and PML
    Relationship between BER and photon number measured by two decoding methods at maximum communication rates based on SND
    Fig. 18. Relationship between BER and photon number measured by two decoding methods at maximum communication rates based on SND
    YearTerminalWavelength /nmModulationDetectorDistance /kmCommunication rate /(Mb⋅s-1
    1995ETS-VI / TMF Ground Station

    514 (up)

    830 (down)

    2-PPMAPD>370001.024
    2005

    ARTEMIS /

    OICETS

    847 (up)819 (down)

    NRZ-OOK (up)

    2-PPM (down)

    APD45000

    50 (up)

    2 (down)

    2008

    TerraSAR-X /

    NFIRE

    1064 (two-way)BPSKBalanced detector50005625
    2011HY-2 /Ground Station---2000504 (down)
    2013LADEE / LLGT Ground Station

    1558 (up)

    1550 (down)

    SCPPMSNSPD array (ground)400000

    20 (up)

    622 (down)

    2016QUESS / Ground Station

    1064 (up)

    1550 (down)

    -->1000

    20 (up)

    5120 (down)

    2017SJ-13 / Ground Station---400005000
    UnderwayPsyche / OCTL Ground station

    1064 (up)

    1550 (down)

    SCPPMSNSPD array (ground)1.5×107—4×108267 (down)
    Table 1. Summary of typical space optical communication transceiver technology
    InstitutionYearWavelength /nmModulationDetectorDistance /mCommunication rate /(Gb⋅s-1
    KAUST2016450NRZ-OOKAPD20/121.5/2.0
    SSSUP2018470Manchester codedAPD100.01
    US2019450QAM-OFDMPIN1.5/34.92/3.22
    ZJU201752032QAM-OFDMAPD21+55.5
    ZJU2018450DMTAPD/PIN15/57.33/16.6
    ZJU2019450256QAM-DMTPIN3512.62
    ZJU2018460PAM4MPPC20.012
    ZJU2019Blue LEDPPMMPPC46Mb⋅s-1
    ZJU201952032QAM-OFDMMPPC210.312
    FU2017520NRZ-OOKAPD/PIN34.52.7
    FU2018457PAM8PIN1.21.5
    FU201852164QAM-DMT2 PINs1.22.175
    FU2019Blue LED64QAM-DMTPIN1.23.075
    FU2020450OOKSPAD1170.002
    USTC2019450NRZ-OOKAPD602.5
    USTC2019520NRZ-OOKAPD1000.5
    NTUT201640516QAM-OFDMPD89.6
    NTUT2017488PAM4PIN1016
    NTU201745016QAM-OFDMPIN1.7/10.212.4/5.6
    MCUT2019488PAM4APD12.530
    SIOM2018532256-PPMPMT249.2-
    Table 2. Summary of the typical underwater optical communication transceiver technology
    ParameterSi-PINSi-APDGe-PINGe-APDInGaAs-PINInGaAs-APD
    Wavelength /nm400—1100800—1800900—1700
    Peak /nm900830155013001300 (1550)1300 (1550)
    Responsivity /(A⋅W-10.677—1300.65—0.73—28

    0.63—0.8

    (0.75—0.97)

    Quantum efficiency /%65—907750—5555—7560—7060—70
    Gain1150—25015—40110—30
    Bias voltage /(-V)45—1002206—1020—355<30
    Dark current /nA1—100.1—1.050—50010—5001—201—5
    Capacitance /pF1.2—31.3—22—52—50.5—20.5
    Rise time /ns0.5—10.1—20.1—0.50.5—0.80.06—0.50.1—0.5
    Table 3. Summary of typical performances of PIN and APD based on different materials[54]
    DetectorWavelength /nmEfficiency /%Maximum count rate /(106 s-1Dark count /(103 s-1Jitter /ps
    GaAsP PMT550—6504010<1080
    InP/InGaAs PMT950—17002-250400
    Si SPAD820551<0.120
    InGaAs SPAD13104519712140
    SNSPD1550>9025<0.01<5
    Table 4. Summary of the typical performances of different single photon detectors[55]
    Chao Wan, Hao Hao, Qingyuan Zhao, Hao Liu, Cong Li, Te Chen, Guixing Cao, Xuecou Tu, Labao Zhang, Xiaoqing Jia, Lin Kang, Jian Chen, Huabing Wang, Peiheng Wu. Application of Single Photon Detection in Wireless Optical Communication Transceiver Technology[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0500001
    Download Citation