• Photonics Research
  • Vol. 9, Issue 10, 2068 (2021)
Lucas Deniel1、*, Erwan Weckenmann2, Diego Pérez Galacho1、4, Christian Lafforgue1, Stéphane Monfray3, Carlos Alonso-Ramos1, Laurent Bramerie2, Frédéric Boeuf3, Laurent Viven1, and Delphine Marris-Morini1
Author Affiliations
  • 1Univ. Paris-Saclay, CNRS, Centre for Nanosciences and Nanotechnologies, 91120 Palaiseau, France
  • 2Univ. Rennes, CNRS, FOTON-UMR 6082, F-22305 Lannion, France
  • 3ST Microelectronics, 850 rue Jean Monnet, 38920 Crolles, France
  • 4Current address: ITEAM Research Institute, Universitat Politècnica de València, Spain
  • show less
    DOI: 10.1364/PRJ.431282 Cite this Article Set citation alerts
    Lucas Deniel, Erwan Weckenmann, Diego Pérez Galacho, Christian Lafforgue, Stéphane Monfray, Carlos Alonso-Ramos, Laurent Bramerie, Frédéric Boeuf, Laurent Viven, Delphine Marris-Morini. Silicon photonics phase and intensity modulators for flat frequency comb generation[J]. Photonics Research, 2021, 9(10): 2068 Copy Citation Text show less
    References

    [1] S. A. Diddams, K. Vahala, T. Udem. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science, 369, eaay3676(2020).

    [2] T. Udem, R. Holzwarth, T. W. Hänsch. Optical frequency metrology. Nature, 416, 233-237(2002).

    [3] S. A. Diddams, D. J. Jones, L.-S. Ma, S. T. Cundiff, J. L. Hall. Optical frequency measurement across a 104-THz gap with a femtosecond laser frequency comb. Opt. Lett., 25, 186-188(2000).

    [4] M. Kourogi, K. Nakagawa, M. Ohtsu. Wide-span optical frequency comb generator for accurate optical frequency difference measurement. IEEE J. Quantum Electron., 29, 2693-2701(1993).

    [5] V. Torres-Company, J. Schroder, A. Fulop, M. Mazur, L. Lundberg, O. B. Helgason, M. Karlsson, P. A. Andrekson. Laser frequency combs for coherent optical communications. J. Lightwave Technol., 37, 1663-1670(2019).

    [6] I. Coddington, N. Newbury, W. Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016).

    [7] N. Picqué, T. W. Hänsch. Frequency comb spectroscopy. Nat. Photonics, 13, 146-157(2019).

    [8] N. Kuse, M. E. Fermann. Frequency-modulated comb LIDAR. APL Photon., 4, 106105(2019).

    [9] V. Torres-Company, A. M. Weiner. Optical frequency comb technology for ultrabroadband radiofrequency photonics. Laser Photon. Rev., 8, 368-393(2013).

    [10] M. S. Alshaykh, J. D. McKinney, A. M. Weiner. Radio-frequency signal processing using optical frequency combs. IEEE Photon. Technol. Lett., 31, 1874-1877(2019).

    [11] C. Deakin, Z. Liu. Noise and distortion analysis of dual frequency comb photonic RF channelizers. Opt. Express, 28, 39750-39769(2020).

    [12] J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. Pernice, H. Bhaskaran. Parallel convolution processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).

    [13] B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, P. R. Prucnal. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).

    [14] A. Parriaux, K. Hammani, G. Millot. Electro-optic frequency combs. Adv. Opt. Photon., 12, 223-287(2020).

    [15] F. Bontempi, N. Andriolli, F. Scotti, M. Chiesa, G. Contestabile. Comb line multiplication in an InP integrated photonic circuit based on cascaded modulators. IEEE J. Sel. Top. Quantum Electron., 25, 3500107(2019).

    [16] S. Liu, K. Wu, L. Zhou, L. Lu, B. Zhang, G. Zhou, J. Chen. Optical frequency comb and Nyquist pulse generation with integrated silicon modulators. IEEE J. Sel. Top. Quantum Electron., 26, 8300208(2020).

    [17] Z. Wang, M. Ma, H. Sun, M. Khalil, R. Adams, K. Yim, X. Jin, L. R. Chen. Optical frequency comb generation using CMOS compatible cascaded Mach–Zehnder modulators. IEEE J. Quantum Electron., 55, 8400206(2019).

    [18] I. Demirtzioglou, C. Lacava, K. R. H. Bottrill, D. J. Thomson, G. T. Reed, D. J. Richardson, P. Petropoulos. Frequency comb generation in a silicon ring resonator modulator. Opt. Express, 26, 790-797(2018).

    [19] J. Lin, H. Sepehrian, W. Shi. Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks. IEEE Photon. Technol. Lett., 30, 1495-1498(2018).

    [20] J. Qian, S. Tian, L. Shang. Investigation on Nyquist pulse generation by optical frequency comb. J. Opt. Technol., 83, 699-702(2016).

    [21] A. K. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, J. Leuthold. Flexible RF-based comb generator. IEEE Photon. Technol. Lett., 25, 701-704(2013).

    [22] M. Khalil, R. Maram, B. Naghdi, A. Samani, M. Jacques, L. R. Chen, D. V. Plant. Electro-optic frequency comb generation using cascaded silicon microring modulators. OSA Advanced Photonics Congress, IM3A.6(2020).

    [23] K. P. Nagarjun, V. Jeyaselvan, S. K. Selvaraja, V. R. Supradeepa. Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators. Opt. Express, 26, 10744-10753(2018).

    [24] X. Wu, H. K. Tsang. Flat-top frequency comb generation with silicon microring modulator and filter. Conference on Lasers and Electro-Optics, SM4O.6(2017).

    [25] A. Parriaux, M. Conforti, A. Bendahmane, J. Fatome, C. Finot, S. Trillo, N. Picqué, G. Millot. Spectral broadening of picosecond pulses forming dispersive shock waves in optical fibers. Opt. Lett., 42, 3044-3047(2017).

    [26] G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, N. Picqué. Frequency-agile dual-comb spectroscopy. Nat. Photonics, 10, 27-30(2016).

    [27] R. Wu, V. Torres-Company, D. E. Leaird, A. M. Weiner. Supercontinuum-based 10-GHz flat-topped optical frequency comb generation. Opt. Express, 21, 6045-6052(2013).

    [28] V. Torres-Company, J. Lancis, P. Andrés. Lossless equalization of frequency combs. Opt. Lett., 33, 1822-1824(2008).

    [29] H.-J. Kim, A. J. Metcalf, O. E. Sandoval, D. E. Leaird, A. M. Weiner. Broadband and ultra-flat optical comb generation using an EO comb source and a programmable pulse shaper. Conference on Lasers and Electro-Optics (CLEO), JW2A.72(2014).

    [30] A. J. Metcalf, V. Torres-Company, D. E. Leaird, A. M. Weiner. High-power broadly tunable electrooptic frequency comb generator. IEEE J. Quantum Electron., 19, 3500306(2013).

    [31] R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, A. M. Weiner. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt. Lett., 35, 3234-3236(2010).

    [32] T. Sakamoto, A. Chiba. Multiple-frequency-spaced flat optical comb generation using a multiple-parallel phase modulator. Opt. Lett., 42, 4462-4465(2017).

    [33] N. Yokota, H. Yasaka. Operation strategy of InP Mach–Zehnder modulators for flat optical frequency comb generation. IEEE J. Quantum Electron., 52, 5200207(2016).

    [34] R. Slavik, S. G. Farwell, M. J. Wale, D. J. Richardson. Compact optical comb generator using InP tunable laser and push-pull modulator. IEEE Photon. Technol. Lett., 27, 217-220(2015).

    [35] C. Weimann, P. C. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, C. Koos. Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission. Opt. Express, 22, 3629-3637(2014).

    [36] T. Sakamoto, T. Kawanishi, M. Tsuchiya. 10 GHz, 24 ps pulse generation using a single-stage dual-drive Mach-Zehnder modulator. Opt. Lett., 33, 890-892(2008).

    [37] K. Li, S. Liu, D. J. Thomson, W. Zhang, X. Yan, F. Meng, C. G. Littlejohns, H. Du, M. Banakar, M. Ebert, W. Cao, D. Tran, B. Chen, A. Shakoor, P. Petropoulos, G. T. Reed. Electronic–photonic convergence for silicon photonics transmitters beyond 100 Gbps on–off keying. Optica, 7, 1514-1516(2020).

    [38] X. Chen, M. M. Milosevic, A. F. J. Runge, X. Yu, A. Z. Khokhar, S. Mailis, D. J. Thomson, A. C. Peacock, S. Saito, G. T. Reed. Silicon erasable waveguides and directional couplers by germanium ion implantation for configurable photonic circuits. Opt. Express, 28, 17630-17642(2020).

    [39] G. Zhou, Y. Guo, L. Lu, J. Chen, L. Zhou. Ultra-wideband signal generation based on a silicon segmented Mach-Zehnder modulator. IEEE Photon. J., 12, 5502615(2020).

    [40] D. Marris-Morini, C. Baudot, J.-M. Fédéli, G. Rasigade, N. Vulliet, A. Souhaité, M. Ziebell, P. Rivallin, S. Olivier, P. Crozat, X. L. Roux, D. Bouville, S. Menezo, F. Bœuf, L. Vivien. Low loss 40 Gbit/s silicon modulator based on interleaved junctions and fabricated on 300 mm SOI wafers. Opt. Express, 21, 22471-22475(2013).

    [41] A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, D. V. Plant. Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator. Opt. Express, 25, 13252-13262(2017).

    [42] M. H. Idjadi, S. Arab, F. Aflatouni. Optical frequency comb generation in silicon by recursive electro-optic modulation. Conference on Lasers and Electro-Optics, SF3O.5(2020).

    [43] K. P. Nagarjun, P. Raj, V. Jeyaselvan, S. K. Selvaraja, V. R. Supradeepa. Microwave power induced resonance shifting of silicon ring modulators for continuously tunable, bandwidth scaled frequency combs. Opt. Express, 28, 13032-13042(2020).

    [44] Y. Xu, J. Lin, R. Dubé-Demers, S. LaRochelle, L. Rusch, W. Shi. Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators. Opt. Lett., 43, 1554-1557(2018).

    [45] K. P. Nagarjun, R. Prakash, B. S. Vikram, S. Arora, V. Jeyaselvan, S. K. Selvaraja, V. R. Supradeepa. Bandwidth scaling of silicon modulator-based combs using multi-carriers and frequency offset locking. OSA Contin., 3, 921-928(2020).

    [46] L. Deniel, E. Weckenmann, D. P. Galacho, C. Alonso-Ramos, F. Boeuf, L. Vivien, D. Marris-Morini. Frequency-tuning dual-comb spectroscopy using silicon Mach-Zehnder modulators. Opt. Express, 28, 10888-10898(2020).

    [47] T. Sakamoto, T. Kawanishi, M. Izutsu. Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator. Opt. Lett., 32, 1515-1517(2007).

    [48] H. Murata, A. Morimoto, T. Kobayashi, S. Yamamoto. Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators. IEEE J. Sel. Top. Quantum Electron., 6, 1325-1331(2000).

    [49] R. Soref, B. Bennett. Electrooptical effects in silicon. IEEE J. Quantum Electron., 23, 123-129(1987).

    [50] C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, E. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, F. Boeuf. DAPHNE silicon photonics technological platform for research and development on WDM applications. Proc. SPIE, 9891, 98911D(2016).

    [51] J. Witzens. High-speed silicon photonics modulators. Proc. IEEE, 106, 2158-2182(2018).

    [52] A. Samani, E. El-Fiky, M. Morsy-Osman, R. Li, D. Patel, T. Hoang, M. Jacques, M. Chagnon, N. Abadia, D. V. Plant. Silicon photonic Mach–Zehnder modulator architectures for on chip PAM-4 signal generation. J. Lightwave Technol., 37, 2989-2999(2019).

    Lucas Deniel, Erwan Weckenmann, Diego Pérez Galacho, Christian Lafforgue, Stéphane Monfray, Carlos Alonso-Ramos, Laurent Bramerie, Frédéric Boeuf, Laurent Viven, Delphine Marris-Morini. Silicon photonics phase and intensity modulators for flat frequency comb generation[J]. Photonics Research, 2021, 9(10): 2068
    Download Citation