• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 4, 508 (2021)
Yi-Ming FANG1、2, Zhen YANG1、2, Pei-Peng XU1、2, Kun-Lun YAN1、2, Yan SHENG1、2, and Rong-Ping WANG1、2、3、*
Author Affiliations
  • 1Laboratory of Infrared Materials and Devices, Ningbo University, Ningbo 315211, China
  • 2Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo 315211, China
  • 3Laboratory of Silicate Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.04.010 Cite this Article
    Yi-Ming FANG, Zhen YANG, Pei-Peng XU, Kun-Lun YAN, Yan SHENG, Rong-Ping WANG. Dispersion engineered ZnSe rib waveguide for mid-infrared supercontinuum generation[J]. Journal of Infrared and Millimeter Waves, 2021, 40(4): 508 Copy Citation Text show less
    References

    [1] J M Dudley, J R Taylor. Supercontinuum generation in optical fibers(2010).

    [2] B J Eggleton, B Lutherdavies, K Richardson. Chalcogenide photonics. Nature Photonics, 5, 141-148(2011).

    [3] C R Petersen, U Møller, I Kubat et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photonics, 8, 830(2014).

    [4] W Q Gao, E M Amraoui, M S Liao et al. Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber. Optics Express, 21, 9573(2013).

    [5] M R Karim, B M Rahman, G P Agrawal. Mid-infrared supercontinuum generation using dispersion -engineered Ge(11.5)As(24)Se(64.5) chalcogenide channel waveguide. Opt Express, 23, 6903-6914(2015).

    [6] M S Liao, W Q Gao, T L Cheng et al. Five-octave-spanning supercontinuum generation in fluride glass. App.Phy.Exp, 6, 1-3(2013).

    [7] J J Pigeon, S Y Tochitsky, C Gong et al. Supercontinuum generation from 2 to 20 mum in GaAs pumped by picosecond CO(2) laser pulses. Opt Lett, 39, 3246-3249(2014).

    [8] O P Kulkarni, V V Alexander, M Kumar et al. Supercontinuum generation from 1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier. J. Opt. Soc. Am. B, 28, 2486-2498(2011).

    [9] M A G Porcel, F Schepers, J P Epping et al. Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths. Optics Express, 25, 1542-1554(2017).

    [10] T S Saini, A Kumar, R K Sinha. Design and modeling of dispersion engineered rib waveguide for ultra-broadband M-IR supercontinuum generation. Journal of Modern Optics, 64, 143-149(2017).

    [11] M R Karim, H Ahmad, S Ghosh et al. Design of dispersion-engineered As2Se3 channel waveguide for mid-infrared region supercontinuum generation editors-pick. J. Appl. Phys, 123, 213101(2018).

    [12] Z M Zhao, X S Wang, S X Dai et al. 1.5–14  μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber. Opt. Lett, 41, 5222-5225(2016).

    [13] Z M Zhao, B Wu, X S Wang et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber. Laser & Photonics Reviews, 11, 1700005(2017).

    [14] Y Yu, X Gai, T Wang et al. Mid-infrared supercontinuum generation in chalcogenides. Optical Materials Express, 3, 1075(2013).

    [15] H G Dantanarayana, N Abdel-Moneim, Z Tang et al. Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation. Optical Materials Express, 4, 1444(2014).

    [16] I Kubat, C S Agger, U Møller et al. Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm. Opt. Express, 22, 19169-19182(2014).

    [17] A Al-kadry, C Baker, M E Amraoui et al. Broadband supercontinuum generation in As2Se3 chalcogenide wires by avoiding the two-photon absorption effects. Opt. Lett, 38, 1185-1187(2013).

    [18] Y Yu, X Gai, P Ma et al. Experimental demonstration of linearly polarized 2-10 mum supercontinuum generation in a chalcogenide rib waveguide. Opt. Let, 41, 958-961(2016).

    [19] X Gai, D-Y Choi, S Y Madden et al. Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide. Opt. Lett, 37, 3870-3872(2012).

    [20] A Al-kadry, M E Amraoui, Y Messaddeq et al. Two octaves mid-infrared supercontinuum generation in As2Se 3 microwires. Opt. Express, 22, 31131-31137(2014).

    [21] R P Wang, K L Yan, Z Y Yang et al. Structural and physical properties of Ge11.5As24S64.5·xSe64.5·(1 - X) glasses. Journal of Non Crystalline Solids, 427, 16-19(2015).

    [22] Q L Li, D F Qi, X S Wang et al. Femto- and nano-second laser-induced damages in chalcogenide glasses. Japanese Journal of Applied, 58, 080911(2019).

    [23] H Krola, C Grezes-Besset, L Gallais et al. Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates. SPIE, 6403, 640316(2006).

    [24] W Q Ma, L L Wang, P Q Zhang et al. Surface damage and threshold determination of Ge–As–Se glasses in femtosecond pulsed laser micromachining. Journal of the American Ceramic Society, 103, 94-102(2020).

    [26] M Durand, A Houard, K Lim et al. Study of filamentation threshold in zinc selenide. Opt Express, 22, 5852-5858(2014).

    [27] T Wang, X Gai, W H Wei et al. Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses. Opt. Mater. Express, 4, 1011(2014).

    [28] R Suminas, G Tamosauskas, G Valiulis et al. Multi-octave spanning nonlinear interactions induced by femtosecond filamentation in polycrystalline ZnSe. Appl Phys Lett, 110, 1-4(2017).

    [29] O Mouawad, P Bejot, F Billard et al. Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: Towards multi-octave supercontinuum absorption spectroscopy. Optical Materials, 60, 355(2016).

    [30] K Werner, M G Hastings, A Schweinsberg et al. Ultrafast mid-infrared high harmonic and supercontinuum generation with n2 characterization in zinc selenide. Optics Express, 27, 2867(2019).

    [31] R Suminas, A Marcinkeviciute, G Tamosauskas et al. Even and odd harmonics-enhanced supercontinuum generation in zinc-blende semiconductors. Journal of the Optical Society of America B, 36, A22(2019).

    [32] V Mittal, N P Sessions, J S Wilkinson et al. Optical quality ZnSe films and low loss waveguides on Si substrates for mid-infrared applications. Optical Materials Express, 7, 712-745(2017).

    [33] V Mittal, M Nedeljkovic, D J Rowe et al. Chalcogenide glass waveguides with paper-based fluidics for mid-infrared absorption spectroscopy. Opt. Lett, 43, 2913(2018).

    [34] Z U Borisova. Glassy Semiconductors(1981).

    [35] M Zhu, H Liu, X Li et al. Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides. Optics Express, 20, 15899-15907(2012).

    [36] M R Karim, B M Rahman, G P Agrawal. Dispersion engineered Ge(1)(1).(5)As(2)(4) Se(6)(4).(5) nanowire for supercontinuum generation: a parametric study. Opt. Express, 22, 3102931040(2014).

    [37] X Gai, S Madden, D-Y Choi et al. Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136W-1m-1 at 1 550 nm. Optics Express, 18, 18866-18874(2010).

    [38] D C Hutchings, E W Van Stryland. Nondegenerate two-photon absorption in zinc blende semiconductors. Journal of the Optical Society of America B, 9, 2065-2074(1992).

    [39] S Anand, P Verma, K P Jain et al. Temperature dependence of optical phonon lifetimes in ZnSe. Physica B, 226, 331-337(1996).

    [40] G Agrawal. Nonlinear fiber optics(2013).

    Yi-Ming FANG, Zhen YANG, Pei-Peng XU, Kun-Lun YAN, Yan SHENG, Rong-Ping WANG. Dispersion engineered ZnSe rib waveguide for mid-infrared supercontinuum generation[J]. Journal of Infrared and Millimeter Waves, 2021, 40(4): 508
    Download Citation