• Journal of Inorganic Materials
  • Vol. 34, Issue 3, 335 (2019)
Xiao-Fang TAN1、2, Si-Chen DUAN1, Hong-Xiang WANG1、3, Qing-Song WU4, Miao-Miao LI5, Guo-Qiang LIU1、3, Jing-Tao XU1、3, Xiao-Jian TAN1、3, He-Zhu SHAO1、3, Jun JIANG1、3, [in Chinese]1、2, [in Chinese]1, [in Chinese]1、3, [in Chinese]4, [in Chinese]5, [in Chinese]1、3, [in Chinese]1、3, [in Chinese]1、3, [in Chinese]1、3, and [in Chinese]1、3
Author Affiliations
  • 11. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • 22. Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
  • 33. University of Chinese Academy of Sciences, Beijing 100049, China
  • 44. Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
  • 55. College of Mechanics and Materials, Hohai University, Nanjing 210098, China
  • show less
    DOI: 10.15541/jim20180273 Cite this Article
    Xiao-Fang TAN, Si-Chen DUAN, Hong-Xiang WANG, Qing-Song WU, Miao-Miao LI, Guo-Qiang LIU, Jing-Tao XU, Xiao-Jian TAN, He-Zhu SHAO, Jun JIANG, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Multi-doping in SnTe: Improvement of Thermoelectric Performance due to Lower Thermal Conductivity and Enhanced Power Factor[J]. Journal of Inorganic Materials, 2019, 34(3): 335 Copy Citation Text show less
    References

    [1] G KANATZIDIS M, R SOOTSMAN J, Y CHUNG D. New and old concepts in thermoelectric materials. Angewandte Chemie International Edition, 48, 8616-8639(2009).

    [2] G KANATZIDIS M. Nanostructured thermoelectrics: the new paradigm?. Chemistry of Materials, 22, 648-659(2009).

    [3] D ZHAO L, G KANATZIDIS M, P DRAVID V. The panoscopic approach to high performance thermoelectrics. Energy & Environmental Science, 7, 251-268(2014).

    [4] A SHAKOURI, A MAJUMDAR, J VINEIS C et al. Nanostructured thermoelectrics: big efficiency gains from small features. Advanced Materials, 22, 3970-3980(2010).

    [5] V JOVOVIC, S TOBERER E, P HEREMANS J et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 321, 554-557(2008).

    [6] V KULBACHINSKII, J P HEREMANS, M JAWORSKI C. Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power. Physical Review B, 80, 233201-1-4(2009).

    [7] E QUAREZ, D MAHANTI S, D BILC et al. Resonant states in the electronic structure of the high performance thermoelectrics AgPbmSbTe2+m: the role of Ag-Sb microstructures. Physical Review Letters, 93, 146403-1-4(2004).

    [8] K AHN, K HAN M, J HE et al. Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit. Journal of the American Chemical Society, 132, 5227-5235(2010).

    [9] D MAHANTI S, S AHMAD, K HOANG et al. Ab initio studies of the electronic structure of defects in PbTe. Physical Review B, 74, 155205-1-13(2006).

    [10] Q ZHANG, H WANG, W LIU et al. Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. Energy & Environmental Science, 5, 5246-5251(2012).

    [11] M CHAMOIRE A, P HEREMANS J, B WIENDLOCHA. Resonant levels in bulk thermoelectric semiconductors. Energy & Environmental Science, 5, 5510-5530(2012).

    [12] X SHI, A LALONDE, Y PEI et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 473, 66(2011).

    [13] X TAN, W LIU, K YIN et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. Physical Review Letters, 108, 166601-1-5(2012).

    [14] D ZHAO L, Q HAO S, J WU H et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy & Environmental Science, 6, 3346-3355(2013).

    [15] J YANG, L CHEN, P MEISNER G. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Applied Physics Letters, 85, 1140-1142(2004).

    [16] B ABELES. Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Physical Review, 131, 1906-1911(1963).

    [17] Y PEI, G ZEIER W, G POMREHM et al. Phonon scattering through a local anisotropic structural disorder in the thermoelectric solid solution Cu2Zn1-xFexGeSe4. Journal of the American Chemical Society, 135, 726-732(2013).

    [18] H CHI, G TAN, W LIU et al. Realization of high thermoelectric performance in p-type unfilled ternary skutterudites FeSb2+xTe1-xvia band structure modification and significant point defect scattering. Acta Materialia, 61, 7693-7704(2013).

    [19] G TAN, S HAO, D ZHAO L et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 351, 141-144(2015).

    [20] J MINNICH A, S DRESSELHAUS M, F REN Z et al. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy & Environmental Science, 2, 466-479(2009).

    [21] B LIAO, Y LAN, Q ZHANG et al. High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proceedings of the National Academy of Sciences, 110, 13261-13266(2013).

    [22] W LIU, G TAN, S WANG et al. Rapid preparation of CeFe4Sb12 Skutterudite by melt spinning: rich nanostructures and high thermoelectric performance. Journal of Materials Chemistry A, 1, 12657-12668(2013).

    [23] J HE, H LO S, D ZHAO L et al. High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. Journal of the American Chemical Society, 133, 20476-20487(2011).

    [24] I WU C, J HE, D ZHAO L et al. Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. Journal of the American Chemical Society, 134, 7902-7912(2012).

    [25] D ZHAO L, S HAO, J HE et al. Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. Journal of the American Chemical Society, 134, 16327-16336(2012).

    [26] Y LEE, H LO S, J ANDROULAKIS et al. High-performancetellurium-free thermoelectrics: all-scale hierarchical structuring of p-type PbSe-MSe systems (M=Ca, Sr, Ba). Journal of the American Chemical Society, 135, 5152-5160(2013).

    [27] K BISWAS, J HE, Q ZHANG et al. Strained endotaxial nanostructures with high thermoelectric figure of merit. Nature Chemistry, 3, 160-166(2011).

    [28] K BISWAS, D BLUM I, J HE et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 489, 414-418(2012).

    [29] Y ZHENG, G TAN, X TANG. High thermoelectric performance of nonequilibrium synthesized CeFe4Sb12 composite with multi-scaled nanostructures. Applied Physics Letters, 103, 7837-1-5(2013).

    [30] J TAN G, Q HAO S, Y SHI F et al. Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe. Journal of the American Chemical Society, 137, 11507-11516(2015).

    [31] M ROGERS L. Drift mobility of light-mass holes in PbTe heavily doped with Na. Journal of Physics D Applied Physics, 1, 1067(1968).

    [32] J XU, G LIU, J HE et al. Enhanced thermopower in rock-salt SnTe-CdTe from band convergence. RSC Advances, 6, 32189-32192(2016).

    [33] F SHI, D ZHAO L, G TAN et al. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. Journal of the American Chemical Society, 136, 7006-7017(2014).

    [34] Q HAO S, Y SHI F, J TAN G et al. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence. Journal of the American Chemical Society, 137, 5100-5112(2015).

    [35] F SHI, J DOAK, G TAN et al. Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. Energy & Environmental Science, 8, 267-277(2014).

    [36] L WEN, B GE, L ZHENG et al. Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects. Advanced Materials, 29, 1605887-1-8(2017).

    [37] J XU, X TAN, J HE et al. Valence band engineering and thermoelectric performance optimization in SnTe by Mn-alloying via a zone-melting method. Journal of Materials Chemistry A, 3, 19974-19979(2015).

    [38] Q HAO S, Y SHI F, J TAN G et al. Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe. Journal of the American Chemical Society, 137, 11507-11516(2015).

    [39] Z CHEN, S LIN, W LI et al. Band and scattering tuning for high performance thermoelectric Sn1-xMnxTe alloys. Journal of Materiomics, 1, 307-315(2015).

    [40] W LI, L ZHENG, S LIN et al. Interstitial defects improving thermoelectric SnTe in addition to band convergence. ACS Energy Letters, 2, 563-568(2017).

    [41] H WU, D FENG, C CHANG et al. Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe. Energy & Environmental Science, 8, 3298-3312(2015).

    [42] S SHENOY U, S ANAND, A BANIK et al. Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties. Chemistry of Materials, 27, 581-587(2015).

    [43] X TAN, T HU, H SHAO et al. High thermoelectric performance in two-dimensional graphyne sheets predicted by first-principles calculations. Physical Chemistry Chemical Physics, 17, 22872-22881(2015).

    [44] X LU, H WU, G WANG et al. Sodium-doped tin sulfide single crystal: a nontoxic earth-abundant material with high thermoelectric performance. Advanced Energy Materials, 8, 1800087-1-8(2018).

    [45] H LO S, D ZHAO L, S HAO et al. High thermoelectric performance via hierarchical compositionally alloyed nanostructures. Journal of the American Chemical Society, 135, 7364-7370(2013).

    [46] B POUDEL, Y MA, Q HAO et al. High thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 320, 634-638(2008).

    [47] D ZHAO L, H WU, X ZHANG et al. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. Journal of the American Chemical Society, 138, 2366-2373(2016).

    [48] X SHI, F XU, H LIU et al. Copper ion liquid-like thermoelectrics. Nature Materials, 11, 422-425(2012).

    [49] T DAY, T ZHANG et al. High thermoelectric performance in non-toxic earth-abundant copper sulfide. Advanced Materials, 26, 3974-3978(2014).

    [50] B KANISHKA, B ANANYA. Lead-free thermoelectrics: promising thermoelectric performance in p-type SnTe1-xSex system. Journal of Materials Chemistry A, 2, 9620-9625(2014).

    [51] G LIU, X TAN, X TAN et al. Optimizing the thermoelectric performance of In-Cd codoped SnTe by introducing Sn vacancies. Journal of Materials Chemistry C, 5, 7504-7509(2017).

    [52] T XU J, Q LIU G, J TAN X et al. Element-selective resonant state in M-doped SnTe (M=Ga, In, and Tl). Physical Chemistry Chemical Physics, 18, 20635-20639(2016).

    Xiao-Fang TAN, Si-Chen DUAN, Hong-Xiang WANG, Qing-Song WU, Miao-Miao LI, Guo-Qiang LIU, Jing-Tao XU, Xiao-Jian TAN, He-Zhu SHAO, Jun JIANG, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Multi-doping in SnTe: Improvement of Thermoelectric Performance due to Lower Thermal Conductivity and Enhanced Power Factor[J]. Journal of Inorganic Materials, 2019, 34(3): 335
    Download Citation