• Photonics Research
  • Vol. 9, Issue 8, 1439 (2021)
Weizhe Wang1, Han Wu1, Cheng Liu2, Biao Sun3, and Houkun Liang1、*
Author Affiliations
  • 1College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
  • 2Beijing WaveQuanta Technology Co., Ltd., Beijing 102208, China
  • 3Hangzhou Yacto Technology Ltd., Hangzhou 311305, China
  • show less
    DOI: 10.1364/PRJ.425149 Cite this Article Set citation alerts
    Weizhe Wang, Han Wu, Cheng Liu, Biao Sun, Houkun Liang. Multigigawatt 50 fs Yb:CALGO regenerative amplifier system with 11 W average power and mid-infrared generation[J]. Photonics Research, 2021, 9(8): 1439 Copy Citation Text show less
    References

    [1] K. Liu, H. Li, S. Z. Qu, H. K. Liang, Q. J. Wang, Y. Zhang. 20  W, 2  mJ, sub-ps, 258  nm all-solid-state deep-ultraviolet laser with up to 3  GW peak power. Opt. Express, 28, 18360-18367(2020).

    [2] I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, J. Biegert. High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate. Nat. Photonics, 9, 721-724(2015).

    [3] M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, F. Krausz. Multi-watt, multi-octave, mid-infrared femtosecond source. Sci. Adv., 4, eaaq1526(2018).

    [4] B. Zhang, Z. Ma, J. Ma, X. Wu, C. Ouyang, D. Kong, T. Hong, X. Wang, P. Yang, L. Chen, Y. Li, J. Zhang. 1.4  mJ high energy terahertz radiation from lithium niobates. Laser Photon. Rev., 15, 2000295(2021).

    [5] T. Popmintchev, M. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. H. García, L. Plaja, A. Becker, A. J. Becker, M. M. Murnane, H. C. Kapteyn. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science, 336, 1287-1291(2012).

    [6] T. Gaumnitz, A. Jain, Y. Pertot, M. Huppert, I. Jordan, F. Ardana-Lamas, H. J. Wörner. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver. Opt. Express, 25, 27506-27518(2017).

    [7] M. Cho. Coherent two-dimensional optical spectroscopy. Chem. Rev., 108, 1331-1418(2008).

    [8] V. Cardinali, E. Marmois, B. Le Garrec, G. Bourdet. Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature. Opt. Mater., 34, 990-994(2012).

    [9] S. Cho, J. Jeong, S. Hwang, T. J. Yu. Thermal lens effect model of Ti:sapphire for use in high-power laser amplifiers related content. Appl. Phys. Express, 11, 092701(2018).

    [10] T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, F. Krausz. 1  kW, 200  mJ picosecond thin-disk laser system. Opt. Lett., 42, 1381-1384(2017).

    [11] Y. Wang, H. Chi, C. Baumgarten, K. Dehne, A. R. Meadows, A. Davenport, G. Murray, B. A. Reagan, C. S. Menoni, J. J. Rocca. 1.1  J Yb:YAG picosecond laser at 1  kHz repetition rate. Opt. Lett., 45, 6615-6618(2020).

    [12] B. Schmidt, A. Hage, T. Mans, F. Légaré, H. Wörner. Highly stable, 54  mJ Yb-InnoSlab laser platform at 0.5  kW average power. Opt. Express, 25, 17549-17555(2017).

    [13] E. Kaksis, G. Almási, J. A. Fülöp, A. Pugžlys, A. Baltuška, G. Andriukaitis. 110-mJ 225-fs cryogenically cooled Yb:CaF2 multipass amplifier. Opt. Express, 24, 28915-28922(2016).

    [14] M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, R. Moncorgé. Yb:CaF2 — a new old laser crystal. Appl. Phys. B, 97, 327-338(2009).

    [15] G. H. Kim, J. Yang, S. A. Chizov, A. V. Kulik, E. G. Sall, V. E. Yashin, U. Kang. High peak and high average power Yb:KGW laser systems for industrial applications. International Conference Laser Optics, 1(2014).

    [16] H. He, J. Yu, W. Zhu, X. Guo, C. Zhou, S. Ruan. A Yb:KGW dual-crystal regenerative amplifier. High Power Laser Sci. Eng., 8, e35(2020).

    [17] R. Akbari, A. Major. High-power diode-pumped Kerr-lens mode-locked bulk Yb:KGW laser. Appl. Opt., 56, 8838-8844(2017).

    [18] A. Greborio, A. Guandalini, J. Aus der Au. Sub-100  fs pulses with 12.5  W from Yb:CALGO based oscillators. Proc. SPIE, 8235, 823511(2012).

    [19] S. Manjooran, A. Major. Diode-pumped 45  fs Yb:CALGO laser oscillator with 1.7  MW of peak power. Opt. Lett., 43, 2324-2327(2018).

    [20] E. Caracciolo, A. Guandalini, F. Pirzio, M. Kemnitzer, F. Kienle, A. Agnesi, J. Aus der Au. High power Yb:CALGO ultrafast regenerative amplifier for industrial application. Proc. SPIE, 10082, 100821F(2017).

    [21] W. Tian, R. Xu, L. Zheng, X. Tian, D. Zhang, X. Xu, J. Zhu, J. Xu, Z. Wei. 10-W-scale Kerr-lens mode-locked Yb:CALYO laser with sub-100-fs pulses. Opt. Lett., 46, 1297-1300(2021).

    [22] A. Rudenkov, V. Kisel, A. Yasukevich, K. Hovhannesyan, A. Petrosyan, N. Kuleshov. Yb:CALYO-based femtosecond chirped pulse regenerative amplifier for temporally resolved pump-probe spectroscopy. Devices Methods Meas., 9, 205-214(2018).

    [23] E. Caracciolo, F. Pirzio, M. Kemnitzer, M. Gorjan, A. Guandalini, F. Kienle, A. Agnesi, J. Aus Der Au. 42  W femtosecond Yb:Lu2O3 regenerative amplifier. Opt. Lett., 41, 3395-3398(2016).

    [24] I. J. Graumann, A. Diebold, C. G. E. Alfieri, F. Emaury, B. Deppe, M. Golling, D. Bauer, D. Sutter, C. Kränkel, C. J. Saraceno, C. R. Phillips, U. Keller. Peak-power scaling of femtosecond Yb:Lu2O3 thin-disk lasers. Opt. Express, 25, 22519-22536(2017).

    [25] P. Loiko, F. Druon, P. Georges, B. Viana, K. Yumashev. Thermo-optic characterization of Yb:CaGdAlO4 laser crystal. Opt. Mater. Express, 4, 2241-2249(2014).

    [26] J. Pouysegur, M. Delaigue, Y. Zaouter, C. Hönninger, E. Mottay, A. Jaffrès, P. Loiseau, B. Viana, P. Georges, F. Druon. Sub-100-fs Yb:CALGO nonlinear regenerative amplifier. Opt. Lett., 38, 5180-5183(2013).

    [27] B. H. Chen, T. Nagy, P. Baum. Efficient middle-infrared generation in LiGaS2 by simultaneous spectral broadening and difference-frequency generation. Opt. Lett., 43, 1742-1745(2018).

    [28] C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, J. Antonio-Lopez, A. Schülzgen, R. Amezcua-Correa, A. Tünnermann, I. Pupeza, J. Limpert. Watt-scale super-octave mid-infrared intrapulse difference frequency generation. Light Sci. Appl., 7, 94(2018).

    [29] J. Zhang, K. F. Mak, N. Nagl, M. Seidel, D. Bauer, D. Sutter, V. Pervak, F. Krausz, O. Pronin. Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250  cm−1. Light Sci. Appl., 7, 17180(2018).

    [30] S. Vasilyev, I. S. Moskalev, V. O. Smolski, J. M. Peppers, M. Mirov, A. V. Muraviev, P. G. Schunemann, S. B. Mirov, K. L. Vodopyanov, V. P. Gapontsev. Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5-µm pulses. Optica, 6, 111-114(2019).

    [31] Y. G. Jeong, R. Piccoli, D. Ferachou, V. Cardin, M. Chini, S. Hädrich, J. Limpert, R. Morandotti, F. Légaré, B. E. Schmidt, L. Razzari. Direct compression of 170-fs 50-cycle pulses down to 1.5 cycles with 70% transmission. Sci. Rep., 8, 11794(2018).

    [32] S. Gröbmeyer, K. Fritsch, B. Schneider, M. Poetzlberger, V. Pervak, J. Brons, O. Pronin. Self-compression at 1  μm wavelength in all-bulk multi-pass geometry. Appl. Phys. B, 126, 159(2020).

    [33] F. W. Wise, J. Moses. Self-focusing and self-defocusing of femtosecond pulses with cascaded quadratic nonlinearities. Self-focusing: Past and Present, 114, 481-506(2009).

    [34] X. Liu, L. Qian, F. W. Wise. High-energy pulse compression by use of negative phase shifts produced by the cascaded χ(2) : χ(2) nonlinearity. Opt. Lett., 24, 1777-1779(1999).

    [35] P. Raybaut, F. Balembois, F. Druon, P. Georges. Numerical and experimental study of gain narrowing in ytterbium-based regenerative amplifiers. IEEE J. Quantum Electron., 41, 415-425(2005).

    [36] K. Kato, K. Miyata, L. I. Isaenko, S. Lobanov, V. N. Vedenyapin, V. Petrov. Phase-matching properties of LiGaS2 in the 1.025–10.5910  µm spectral range. Opt. Lett., 42, 4363-4366(2017).

    Weizhe Wang, Han Wu, Cheng Liu, Biao Sun, Houkun Liang. Multigigawatt 50 fs Yb:CALGO regenerative amplifier system with 11 W average power and mid-infrared generation[J]. Photonics Research, 2021, 9(8): 1439
    Download Citation