• Laser & Optoelectronics Progress
  • Vol. 56, Issue 17, 170612 (2019)
Libo Yuan*
Author Affiliations
  • Photonics Research Center, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
  • show less
    DOI: 10.3788/LOP56.170612 Cite this Article Set citation alerts
    Libo Yuan. Multi-Core Fiber Characteristics and Its Sensing Applications[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170612 Copy Citation Text show less
    References

    [1] Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 7, 354-362(2013). http://www.nature.com/nphoton/journal/v7/n5/abs/nphoton.2013.94.html

    [2] Saitoh K, Matsuo S. Multicore fibers for large capacity transmission[J]. Nanophotonics, 2, 441-454(2013). http://adsabs.harvard.edu/abs/2013Nanop...2..441S

    [3] Matsuo S, Sasaki Y, Ishida I et al. Recent progress in multi core and few mode fiber. [C]∥Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, March 17-21, 2013, Anaheim, CA, USA. Washington, D. C.: OSA, OM3I, 3(2013).

    [4] Hayashi T[M]. Chapter 9: multi-core optical fibers, 321-352(2013).

    [5] Sano A, Kobayashi T, Yamanaka S et al. 102.3-Tb/s (224×548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone. [C]∥Optical Fiber Communication Conference, March 4-8, 2012, Los Angeles, California, USA. Washington, D. C.: OSA, PDP5C, 3(2012).

    [6] Zhang S L, Huang M F, Yaman F et al. 40×117.6 Gb/s PDM-16QAM OFDM transmission over 10, 181 km with soft-decision LDPC coding and nonlinearity compensation. [C]∥Optical Fiber Communication Conference, March 4-8, 2012, Los Angeles, California, USA. Washington, D. C.: OSA, PDP5C, 4(2012).

    [7] Cai J X, Cai Y, Davidson C et al. 20 Tbit/s capacity transmission over 6860 km. [C]∥Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, March 6-10, 2011, Los Angeles, California, USA. Washington, D. C.: OSA, PDPB4(2011).

    [8] Essiambre R J, Kramer G, Winzer P J et al. Capacity limits of optical fiber networks[J]. Journal of Lightwave Technology, 28, 662-701(2010). http://www.opticsinfobase.org/JLT/abstract.cfm?uri=JLT-28-4-662

    [9] Essiambre R J, Tkach R W. Capacity trends and limits of optical communication networks[J]. Proceedings of the IEEE, 100, 1035-1055(2012). http://ieeexplore.ieee.org/document/6170861

    [10] Morioka T. New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond. [C]∥2009 14th OptoElectronics and Communications Conference, July 13-17, 2009, Vienna, Austria. New York: IEEE, 10846198(2009).

    [11] Iano S, Sato T, Sentsui S et al. Multicore optical fiber. [C]∥Optical Fiber Communication, March 6, 1979, Washington, D. C., USA. Washington, D. C.: OSA, WB1(1979).

    [12] Inao S, Sato T, Hondo H et al. High density multicore-fiber cable. [C]∥International Wire & Cable Symp(IWCS). [S. l.: s. n. ], 370-384(1979).

    [13] Berdagué S, Facq P. Mode division multiplexing in optical fibers[J]. Applied Optics, 21, 1950-1955(1982). http://europepmc.org/abstract/MED/20389977

    [14] Kashima N, Maekawa E, Nihei F. New type of multicore fiber. [C]∥Optical Fiber Communication, April 13, 1982, Phoenix, Arizona, USA. Washington, D. C.: OSA, ThAA5(1982).

    [15] Sumida S, Maekawa E, Murata H. Design of bunched optical-fiber parameters for 1.3-μm wavelength subscriber line use[J]. Journal of Lightwave Technology, 4, 1010-1015(1986). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1074865

    [16] Nihei F, Yamamoto Y, Kojima N. Optical subscriber cable technologies in Japan[J]. Journal of Lightwave Technology, 5, 809-821(1987). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1075568

    [17] Sumida S, Maekawa E, Murata H. Fundamental studies on flat bunched optical fibers[J]. Journal of Lightwave Technology, 3, 159-164(1985). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1074155

    [18] Le N G. Ultra high density cables using a new concept of bunched multicore monomode fibers: a key for the future FTTH networks. [C]∥Proceedings of the 43rd International Wire & Cable Symposium (IWCS), October 14-17, 1994, Atlanta, GA. New York: NASA, 203-210(1994).

    [19] Stern J R, Ballance J W, Faulkner D W et al. Passive optical local networks for telephony applications and beyond[J]. Electronics Letters, 23, 1255-1257(1987). http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4259113

    [20] Taylor D M, Bennett C R, Shepherd T J et al. Demonstration of multi-core photonic crystal fibre in an optical interconnect[J]. Electronics Letters, 42, 331-332(2006). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1610413

    [21] Imamura K, Mukasa K, Sugizaki R et al. Multi-core holey fibers for ultra large capacity wide-band transmission. [C]∥2008 34th European Conference on Optical Communication, September 21-25, 2008, Brussels, Belgium. New York: IEEE, 10426525(2008).

    [22] Imamura K, Mukasa K, Mimura Y et al. Multi-core holey fibers for the long-distance (>100 km) ultra large capacity transmission. [C]∥Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, March 22-26, 2009, San Diego, California, USA. Washington, D. C.: OSA, OTuC3(2009).

    [23] Koshiba M, Saitoh K, Kokubun Y. Heterogeneous multi-core fibers: proposal and design principle[J]. IEICE Electronics Express, 6, 98-103(2009).

    [24] Sakaguchi J, Puttnam B J, Klaus W et al. 19-core fiber transmission of 19×100×172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s. [C]∥Optical Fiber Communication Conference, March 4-8, 2012, Los Angeles, California, USA. Washington, D. C.: OSA, PDP5C, 1(2012).

    [25] Ryf R, Essiambre R, Gnauck A et al. Space-division multiplexed transmission over 4200 km 3-core microstructured fiber. [C]∥Optical Fiber Communication Conference, March 4-8, 2012, Los Angeles, California, USA. Washington, D. C.: OSA, PDP5C, 2(2012).

    [26] Liu X, Chandrasekhar S, Chen X et al. 1.12-Tb/s 32-QAM-OFDM superchannel with 86-b/s/Hz intrachannel spectral efficiency and space-division multiplexed transmission with 60-b/s/Hz aggregate spectral efficiency[J]. Optics Express, 19, B958-B964(2011). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-26-B958

    [27] Lee B G, Kuchta D M, Doany F E et al. 120-Gb/s 100-m transmission in a single multicore multimode fiber containing six cores interfaced with a matching VCSEL array. [C]∥IEEE Photonics Society Summer Topicals 2010, July 19-21, 2010, Playa del Carmen, Mexico. New York: IEEE, 223-224(2010).

    [28] Zhu B Y, Taunay T F, Yan M F et al. 7×10-Gb/s multicore multimode fiber transmissions for parallel optical data links. [C]∥36th European Conference and Exhibition on Optical Communication, September 19-23, 2010, Torino, Italy. New York: IEEE, 11637154(2010).

    [29] Zhu B, Taunay T F, Yan M F et al. Seven-core multicore fiber transmissions for passive optical network[J]. Optics Express, 18, 11117-11122(2010). http://europepmc.org/abstract/MED/20588970

    [30] Yuan L B, Yang J, Liu Z H et al. In-fiber integrated Michelson interferometer[J]. Optics Letters, 31, 2692-2694(2006). http://europepmc.org/abstract/MED/16936860

    [31] Yuan L B, Yang J. -02-07[P]. Liu Z H. In-fiber integrated Michelson interferometer: 200610010422.2.(2007).

    [32] Yuan L B, Yang J, the fabrication methods: 200710072625.9[P]. -01-16(2008).

    [33] Yuan L B, Liu Z H, Yang J. Coupling characteristics between single-core fiber and multicore fiber[J]. Optics Letters, 31, 3237-3239(2006). http://www.ncbi.nlm.nih.gov/pubmed/17072382

    [34] Yuan L B, Liu Z H, Yang J. A coupler. -11-17[P]. its fabrication methods for multicore fibers by welding, tapering with a single core optical fiber: 200610151033.1.(2006).

    [35] Yuan L B, Liu Z H, Yang J et al. Bitapered fiber coupling characteristics between single-mode single-core fiber and single-mode multicore fiber[J]. Applied Optics, 47, 3307-3312(2008). http://www.opticsinfobase.org/abstract.cfm?uri=ao-47-18-3307

    [36] Liu Z H, Bo F S, Wang L et al. Integrated fiber Michelson interferometer based on poled hollow twin-core fiber[J]. Optics Letters, 36, 2435-2437(2011). http://www.ncbi.nlm.nih.gov/pubmed/21725436

    [37] Yuan L B, Yang J, Guan C Y et al. Three-core fiber-based shape-sensing application[J]. Optics Letters, 33, 578-580(2008). http://www.ncbi.nlm.nih.gov/pubmed/18347715

    [38] Yuan L B, Dai Q, Tian F J et al. Linear-core-array microstructured fiber[J]. Optics Letters, 34, 1531-1533(2009). http://www.opticsinfobase.org/abstract.cfm?URI=ol-34-10-1531

    [39] Yuan L B. Recent progress of in-fiber integrated interferometers[J]. Photonic Sensors, 1, 1-5(2011). http://www.opticsjournal.net/Articles/Abstract?aid=OJ1304100000325B8DaG

    [40] Yuan L B. In-fiber integrated optic devices for sensing applications[J]. Proceedings of SPIE, 8421, 84211D(2012). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1381308

    [41] Yuan L B. In-fiber integrated optic devices and its applications. [C]∥The 5th International Symposium on Photonics and Optoelectronics (SOPO2013), May 23-25, 2013, Beijing, China. [S.l.: s.n.](2013).

    [42] Marcuse D. Influence of curvature on the losses of doubly clad fibers[J]. Applied Optics, 21, 4208-4213(1982). http://www.ncbi.nlm.nih.gov/pubmed/20401043

    [43] Snyder A W. Coupled-mode theory for optical fibers[J]. Journal of the Optical Society of America, 62, 1267-1277(1972). http://www.opticsinfobase.org/abstract.cfm?id=54804

    [44] Hardy A, Streifer W. Coupled mode theory of parallel waveguides[J]. Journal of Lightwave Technology, 3, 1135-1146(1985). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1074291

    [45] Streifer W, Osinski M, Hardy A. Reformulation of the coupled-mode theory of multiwaveguide systems[J]. Journal of Lightwave Technology, 5, 1-4(1987). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1075392

    [46] Chuang S L. A coupled mode formulation by reciprocity and a variational principle[J]. Journal of Lightwave Technology, 5, 5-15(1987). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1075409

    [47] Haus H, Huang W, Kawakami S et al. Coupled-mode theory of optical waveguides[J]. Journal of Lightwave Technology, 5, 16-23(1987). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1075416

    [48] Huang W P. Coupled-mode theory for optical waveguides: an overview[J]. Journal of the Optical Society of America A, 11, 963-983(1994). http://www.opticsinfobase.org/josaa/abstract.cfm?uri=josaa-11-3-963

    [49] Koshiba M, Saitoh K, Takenaga K et al. Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory[J]. Optics Express, 19, B102-B111(2011). http://www.ncbi.nlm.nih.gov/pubmed/22274004

    [50] Takenaga K, Arakawa Y, Tanigawa S et al. Reduction of crosstalk by trench-assisted multi-core fiber. [C]∥Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, March 6-10, 2011, Los Angeles, California, USA. Washington, D. C.: OSA, OWJ4(2011).

    [51] Imamura K, Mukasa K, Exposition on Optical Communications. Geneva, Switzerland. Washington, D. C.: OSA, 2011: Mo. 1. LeCervin., 1(2011).

    [52] Hayashi T, Taru T, Shimakawa O et al. Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber[J]. Optics Express, 19, 16576-16592(2011). http://europepmc.org/abstract/MED/21935022

    [53] Hayashi T, Taru T, Shimakawa O et al. Characterization of crosstalk in ultra-low-crosstalk multi-core fiber[J]. Journal of Lightwave Technology, 30, 583-589(2012). http://www.opticsinfobase.org/jlt/abstract.cfm?uri=jlt-30-4-583

    [54] Hayashi T, Taru T, Nagashima T et al. Multi-core fiber for high-capacity long-haul spatially-multiplexed transmission[J]. SEI Technical Review, 7, 14-22(2013).

    [55] Saitoh K, Matsui T, Sakamoto T et al. Multi-core hole-assisted fibers for high core density space division multiplexing. [C]∥Opto-Electronics and Communications Conference (OECC), July 5-9, 2010, Sapporo, Japan. New York: IEEE, 11570089(2010).

    [56] Kumar S, Manyam U H. -08-26[2019-05-05]. https: ∥patents.glgoo.top/patent/US6611648B2/en.(2003).

    [57] Sakaguchi J, Puttnam B J, Klaus W et al. 305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber[J]. Journal of Lightwave Technology, 31, 554-562(2013). http://ieeexplore.ieee.org/document/6296671/

    [58] Jain S, Castro C, Jung Y M et al. 32-core erbium/ytterbium-doped multicore fiber amplifier for next generation space-division multiplexed transmission system[J]. Optics Express, 25, 32887-32896(2017). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-25-26-32887

    [59] Marcuse D. Curvature loss formula for optical fibers[J]. Journal of the Optical Society of America, 66, 216-220(1976). http://www.opticsinfobase.org/abstract.cfm?id=56043

    [60] Schermer R T, Cole J H. Improved bend loss formula verified for optical fiber by simulation and experiment[J]. IEEE Journal of Quantum Electronics, 43, 899-909(2007). http://ieeexplore.ieee.org/document/4300920/

    [61] Sharma A B. Al-Ani A H, Halme S J. Constant-curvature loss in monomode fibers: an experimental investigation[J]. Applied Optics, 23, 3297-3301(1984).

    [62] Nagano K, Kawakami S, Nishida S. Change of the refractive index in an optical fiber due to external forces[J]. Applied Optics, 17, 2080-2085(1978). http://www.ncbi.nlm.nih.gov/pubmed/20203728

    [63] Hayashi T, Nagashima T, Shimakawa O et al. Crosstalk variation of multi-core fibre due to fibre bend. [C]∥36th European Conference and Exhibition on Optical Communication, September 19-23, 2010, Torino, Italy. New York: IEEE, 11636875(2010).

    [64] Nakazawa M, Yoshida M, Hirooka T. Nondestructive measurement of mode couplings along a multi-core fiber using a synchronous multi-channel OTDR[J]. Optics Express, 20, 12530-12540(2012). http://www.ncbi.nlm.nih.gov/pubmed/22714241

    [65] Klaus W, Sakaguchi J, Puttnam B J et al. Free-space coupling optics for multicore fibers[J]. IEEE Photonics Technology Letters, 24, 1902-1905(2012). http://ieeexplore.ieee.org/document/6296687/

    [66] Tottori Y, Kobayashi T, Watanabe M. Low loss optical connection module for 7-core multi-core fiber and seven single mode fibers. [C]∥2012 IEEE Photonics Society Summer Topical Meeting Series, July 9-11, 2012, Seattle, WA, USA. New York: IEEE, 232-233(2012).

    [67] Thomson R R, Bookey H T, Psaila N D et al. Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications[J]. Optics Express, 15, 11691-11697(2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-18-11691

    [68] Neugroschl D, Kopp V I, Singer J et al. “Vanishing-core” tapered coupler for interconnect applications[J]. Proceedings of SPIE, 7221, 72210G(2009). http://spie.org/Publications/Proceedings/Paper/10.1117/12.808632

    [69] Kopp V I, Park J, Wlodawski M et al. Pitch reducing optical fiber array and multicore fiber for space-division multiplexing. [C]∥2013 IEEE Photonics Society Summer Topical Meeting Series, July 8-10, 2013, Waikoloa, HI, USA. New York: IEEE, 99-100(2013).

    [70] Kopp V I, Park J, Wlodawski M et al. Chiral fibers: microformed optical waveguides for polarization control, sensing, coupling, amplification, and switching[J]. Journal of Lightwave Technology, 32, 605-613(2014). http://ieeexplore.ieee.org/document/6609050

    [71] Kopp V I, Park J, Wlodawski M S et al. Vanishing core optical waveguides for coupling, amplification, sensing, and polarization control. [C]∥Advanced Photonics, July 27-31, 2014, Barcelona, Spain. Washington, D. C.: OSA, SoW1B, 3(2014).

    [72] Snyder A W, Love J D. Bends[M]. ∥Optical waveguide theory. Boston, MA: Springer, 179-188(1983).

    [73] Tian F J, Yuan L B, Dai Q et al. Design and fabrication of embedded two elliptical cores hollow fiber[J]. Proceedings of SPIE, 8199, 819911(2011). http://proceedings.spiedigitallibrary.org/mobile/proceeding.aspx?articleid=1344021

    [74] Tian F J, Yuan L B, Dai Q et al. Embedded multicore hollow fiber with high birefringence[J]. Applied Optics, 50, 6162-6167(2011). http://www.opticsinfobase.org/abstract.cfm?URI=ao-50-33-6162

    [75] Guan C Y, Tian F J, Dai Q et al. Characteristics of embedded-core hollow optical fiber[J]. Optics Express, 19, 20069-20078(2011). http://www.ncbi.nlm.nih.gov/pubmed/21997017

    [76] Jin W, Stewart G, Wilkinson M et al. Compensation for surface contamination in a D-fiber evanescent wave methane sensor[J]. Journal of Lightwave Technology, 13, 1177-1183(1995). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=390236

    [77] Chen X, Zhou K, Zhang L et al. Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching[J]. IEEE Photonics Technology Letters, 16, 1352-1354(2004). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1291508

    [78] Chandani S M. Jaeger N A F. Fiber-optic temperature sensor using evanescent fields in D fibers[J]. IEEE Photonics Technology Letters, 17, 2706-2708(2005). http://ieeexplore.ieee.org/document/1542197/

    [79] Chiu M H, Wang S F, Chang R S. D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry[J]. Optics Letters, 30, 233-235(2005). http://europepmc.org/abstract/MED/15751869

    [80] Fleming J W. Dispersion in GeO2-SiO2 glasses[J]. Applied Optics, 23, 4486-4493(1984).

    [81] Tian F J, Yuan L B, Dai Q et al. Birefringence analysis of a two elliptical cores hollow fiber based on finite element method[J]. Proceedings of SPIE, 8351, 83510O(2012). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1346214

    [82] Yuan L B, Dai Q, Yang J, the fabrication method: 200910071521.5[P] et al. -09-16(2009).

    [83] Guan C Y, Yuan L B, Dai Q et al. Supermodes analysis for linear-core-array microstructured fiber[J]. Journal of Lightwave Technology, 27, 1741-1745(2009). http://www.opticsinfobase.org/JLT/abstract.cfm?uri=JLT-27-11-1741

    [84] Beach R J, Feit M D, Mitchell S C et al. Phase-locked antiguided multiple-core ribbon fiber[J]. IEEE Photonics Technology Letters, 15, 670-672(2003). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1196131

    [85] Drachenberg D, Messerly M, Pax P et al. First multi-watt ribbon fiber oscillator in a high order mode[J]. Optics Express, 21, 18089-18096(2013). http://www.ncbi.nlm.nih.gov/pubmed/23938680

    [86] Yuan L B, Dai Q, Tian F J, its fabrication method: 201010138977.1[P] et al. -09-22(2010).

    [87] Elkin N N, Napartovich A P, Sukharev A G et al. Direct numerical simulation of radiation propagation in a multicore fiber[J]. Optics Communications, 177, 207-217(2000). http://www.sciencedirect.com/science/article/pii/S0030401800005563

    [88] Wrage M, Glas P, Fischer D et al. Phase-locking of a multicore fiber laser by wave propagation through an annular waveguide[J]. Optics Communications, 205, 367-375(2002). http://www.sciencedirect.com/science/article/pii/S0030401802012993

    [89] Wrage M, Glas P, Leitner M et al. Experimental and numerical determination of coupling constant in a multicore fiber[J]. Optics Communications, 175, 97-102(2000). http://www.sciencedirect.com/science/article/pii/S0030401899007476

    [90] Gander M J. Galliot E A C, McBride R, et al. Bend measurement using multicore optical fiber. [C]∥12th International Conference on Optical Fiber Sensors, October 28, 1997, Williamsburg, Virginia, USA. Washington, D. C.: OSA, OWC6(1997).

    [91] Yuan L B, Yang J, Liu Z H. A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer[J]. IEEE Sensors Journal, 8, 1114-1117(2008).

    [92] Yuan L B. Recent progress of in-fiber integrated interferometers[J]. Photonic Sensors, 1, 1-5(2011). http://www.opticsjournal.net/Articles/Abstract?aid=OJ1304100000325B8DaG

    [93] Salceda-Delgado G, van Newkirk A, Antonio-Lopez J E et al. . Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber[J]. Optics Letters, 40, 1468-1471(2015).

    [94] Romaniuk R S, Dorosz J. Temperature sensor based on double-core optical fiber[J]. Proceedings of SPIE, 4887, 55-66(2002).

    [95] Rugeland P, Margulis W. Revisiting twin-core fiber sensors for high-temperature measurements[J]. Applied Optics, 51, 6227-6232(2012).

    [96] Antonio-Lopez J E, Eznaveh Z S, LiKamWa P et al. . Multicore fiber sensor for high-temperature applications up to 1000 ℃[J]. Optics Letters, 39, 4309-4312(2014).

    [97] van Newkirk A, Antonio-Lopez E, Salceda-Delgado G et al. . Optimization of multicore fiber for high-temperature sensing[J]. Optics Letters, 39, 4812-4815(2014).

    [98] Zhou A, Li G P, Zhang Y H et al. Asymmetrical twin-core fiber based Michelson interferometer for refractive index sensing[J]. Journal of Lightwave Technology, 29, 2985-2991(2011).

    [99] Liu Z H, Wei Y, Zhang Y et al. Twin-core fiber SPR sensor[J]. Optics Letters, 40, 2826-2829(2015).

    [100] Liu Z H, Wei Y, Zhang Y et al. A multi-channel fiber SPR sensor based on TDM technology[J]. Sensors and Actuators B: Chemical, 226, 326-331(2016).

    [102] Duncan R G, Froggatt M E, Kreger S T et al. High-accuracy fiber-optic shape sensing[J]. Proceedings of SPIE, 6530, 65301S(2007).

    [103] Duncan R G, Raum M T, Cadogan D P et al. Use of high spatial resolution fiber-optic shape sensors to monitor the shape of deployable space structures[C]. AIP Conference Proceedings, 746, 880-886(2005).

    [104] Klute S, Duncan R, Fielder R et al. Fiber-optic shape sensing and distributed strain measurements on a morphing chevron. [C]∥44th AIAA Aerospace Sciences Meeting and Exhibit, January 9-12, 2006, Reno, Nevada. New York: AIAA, 624(2006).

    [105] Arritt B, Murphey T, Dumm H P et al. Demonstration of the use of fiber-optics, with integrated fiber-Bragg gratings, for shape determination of large deployable structures. [C]∥48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April 23-26, 2007, Honolulu, Hawaii. New York: AIAA, 2006(2007).

    [106] Jutte C V, Ko W L, Stephens C A et al. Deformed shape calculation of a full-scale wing using fiber optic strain data from a ground loads test[M]. New York: National Aeronautics and Space Administration(2011).

    [107] Richards L, Parker A R, Ko W L et al. Real-time in-flight strain and deflection monitoring with fiber optic sensors[M]. New York: National Aeronautics and Space Administration(2008).

    [108] Ginn S. Flexible wing designs with sensor control feedback for demonstration on the X-56A (MUTT)[M]. New York: National Aeronautics and Space Administration(2012).

    [109] Kremp T, Feder K S, Ko W et al. Performance characteristics of continuous multicore fiber optic sensor arrays[J]. Proceedings of SPIE, 10058, 100580V(2017).

    [110] Froggatt M E, Klein J W, Gifford D K et al. -07-08[2019-05-05]. https: ∥patents.glgoo.top/patent/US8773650B2/en.(2014).

    [111] Lally E M, Reaves M, Horrell E et al. Fiber optic shape sensing for monitoring of flexible structures[J]. Proceedings of SPIE, 8345, 83452Y(2012).

    Libo Yuan. Multi-Core Fiber Characteristics and Its Sensing Applications[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170612
    Download Citation