• Infrared and Laser Engineering
  • Vol. 51, Issue 3, 20220043 (2022)
Qi He1、2, Yaru Wang1、2, Weicheng Chen1、2, Dian Wan1、2, Si Chen3, Haoran Gao1、2, Rongxiang Guo1、2, Yisheng Gao1、2, Jiaqi Wang4、*, Zhenzhou Cheng1、2, Yu Yu5、*, and Tiegen Liu1、2
Author Affiliations
  • 1School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin 300072, China
  • 3College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
  • 4College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 5Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.3788/IRLA20220043 Cite this Article
    Qi He, Yaru Wang, Weicheng Chen, Dian Wan, Si Chen, Haoran Gao, Rongxiang Guo, Yisheng Gao, Jiaqi Wang, Zhenzhou Cheng, Yu Yu, Tiegen Liu. Advances in short-wavelength mid-infrared silicon photonics (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220043 Copy Citation Text show less
    References

    [1] E Thimsen, B Sadtler, M Y Berezin. Shortwave-infrared (SWIR) emitters for biological imaging: A review of challenges and opportunities. Nanophotonics, 6, 1043-1054(2017).

    [2] Y Zou, S Chakravarty, C J Chung, et al. Mid-infrared silicon photonic waveguides and devices [Invited]. Photonics Research, 6, 254-276(2018).

    [3] H Lin, Z Luo, T Gu, . et al. Mid-infrared integrated photonics on silicon: A perspective. Nanophotonics, 7, 393-420(2017).

    [4] R Guo, H Gao, Z Cheng, et al. Progress in mid-infrared germanium integrated optoelectronics. Chinese Journal of Lasers, 48, 1901002(2021).

    [5] H Ma, H Yang, B Tang, et al. Passive devices at 2 µm wavelength on 200 mm CMOS-compatible silicon photonics platform [Invited]. Chinese Optics Letters, 19, 071301(2021).

    [6] A Schliesser, N Picqué, T W Hänsch. Mid-infrared frequency combs. Nature Photonics, 6, 440-449(2012).

    [7] M Zhang, H Zhao, N Li. Analysis of the influence of hyperspectral spectral resolution on the mineral recognition. Infrared and Laser Engineering, 35, 493-498(2006).

    [8] R H Wilson, K P Nadeau, F B Jaworski, et al. Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization. Journal of Biomedical Optics, 20, 030901(2015).

    [9] T Hu, B Dong, X Luo, et al. Silicon photonic platforms for mid-infrared applications [Invited]. Photonics Research, 5, 05000417(2017).

    [10] G Wysocki, A A Kosterev, F K Tittel. Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 μm. Applied Physics B, 85, 301-306(2006).

    [11] T F Refaat, U N Singh, J Yu, et al. Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements. Applied Optics, 54, 1387-1398(2015).

    [12] J Wu, G Yue, W Chen, . et al. On-chip optical gas sensors based on group-IV materials. ACS Photonics, 7, 2923-2940(2020).

    [13] Y Cai, X Hu. Short wave infrared imaging technology and its defence application. Infrared and Laser Engineering, 35, 634-637(2006).

    [14] Y J Liang, F Liu, Y F Chen, et al. New function of the Yb3+ion as an efficient emitter of persistent luminescence in the short-wave infrared. Light: Science and Applications, 5, e16124(2016).

    [15] M Pisani, P Bianco, M Zucco. Hyperspectral imaging for thermal analysis and remote gas sensing in the short wave infrared. Applied Physics B-Lasers and Optics, 108, 231-236(2012).

    [16] M M P Arnob, H Nguyen, Z Han, et al. Compressed sensing hyperspectral imaging in the 0.9-2.5 μm shortwave infrared wavelength range using a digital micromirror device and InGaAs linear array detector. Applied Optics, 57, 5019-5024(2018).

    [17] Z Liu, Y Chen, Z Li, et al. High-capacity directly modulated optical transmitter for 2-μm spectral region. Journal of Lightwave Technology, 33, 1373-1379(2015).

    [18] R Soref. Enabling 2 μm communications. Nature Photonics, 9, 358-359(2015).

    [19] G Z Mashanovich, S Stankovic, R Topley, et al. Silicon photonic waveguides and devices for near- and mid-IR applications. IEEE Journal of Selected Topics in Quantum Electronics, 21, 407-418(2015).

    [20] Y K Su, Y Zhang, C Y Qiu, et al. Silicon photonic platform for passive waveguide devices: Materials, fabrication, and applications. Advanced Materials Technologies, 5, 1901153(2020).

    [21] R Soref. Mid-infrared photonics in silicon and germanium. Nature Photonics, 4, 495-497(2010).

    [22] A D Bristow, N Rotenberg, Driel H M van. Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm. Applied Physics Letters, 90, 191104(2007).

    [23] W Cao, D Hagan, D J Thomson, et al. High-speed silicon modulators for the 2  μm wavelength band. Optica, 5, 1055-1062(2018).

    [24] Leo F, Kuyken B, Hattasan N, et al. Passive SOI devices f the shtwaveinfrared [C]16 th European Conference on Integrated Optics (ECIO), 2012.

    [25] R Kitamura, L Pilon, M Jonasz. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Applied Optics, 46, 8118-8133(2007).

    [26] S A Miller, M Yu, X Ji, . et al. Low-loss silicon platform for broadband mid-infrared photonics. Optica, 4, 707-712(2017).

    [27] W Chen, J Wu, D Wan, et al. Grating couplers beyond silicon TPA wavelengths based on MPW. Journal of Physics D:Applied Physics, 55, 015109(2021).

    [28] J Q Wang, Z Z Cheng, Z F Chen, . et al. Graphene photodetector integrated on silicon nitride waveguide. Journal of Applied Physics, 117, 144504(2015).

    [29] T H Xiao, Z Cheng, K Goda. Graphene-on-silicon hybrid plasmonic-photonic integrated circuits. Nanotechnology, 28, 245201(2017).

    [30] T Zhou, H Jia, J Ding, et al. On-chip broadband silicon thermo-optic 2×2 four-mode optical switch for optical space and local mode switching. Optics Express, 26, 8375-8384(2018).

    [31] Y Vlasov, S McNab. Losses in single-mode silicon-on-insulator strip waveguides and bends. Optics Express, 12, 1622-1631(2004).

    [32] Z Cheng, H K Tsang, K Xu, et al. Spectral hole burning in silicon waveguides with a graphene layer on top. Optics Letters, 38, 1930-1932(2013).

    [33] Y Zhang, Z Cheng, L Liu, et al. Enhancement of self-phase modulation induced spectral broadening in silicon suspended membrane waveguides. Journal of Optics, 18, 055503(2016).

    [34] Z Cheng, K Goda. Design of waveguide-integrated graphene devices for photonic gas sensing. Nanotechnology, 27, 505206(2016).

    [35] J Wang, Z Cheng, Z Chen, . et al. High-responsivity graphene-on-silicon slot waveguide photodetectors. Nanoscale, 8, 13206-13211(2016).

    [36] J Wang, L Zhang, Y Chen, . et al. Saturable absorption in graphene-on-waveguide devices. Applied Physics Express, 12, 032003(2019).

    [37] W Zhou, Z Cheng, X Chen, et al. Subwavelength engineering in silicon photonic devices. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-13(2019).

    [38] W Chen, G Yue, H Hu, et al. Dual-mode GVD tailoring in a convex waveguide. IEEE Photonics Journal, 12, 1-6(2020).

    [39] T Sharma, V Rana, J Q Wang, et al. Design of grating based narrow band reflector on SOI waveguide. Optik, 227, 165995(2021).

    [40] N Hattasan, B Kuyken, F Leo, et al. High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared. IEEE Photonics Technology Letters, 24, 1536-1538(2012).

    [41] M S Rouifed, C G Littlejohns, G X Tina, et al. Low loss SOI waveguides and MMIs at the MIR wavelength of 2 μm. IEEE Photonics Technology Letters, 28, 2827-2829(2016).

    [42] D E Hagan, A P Knights. Mechanisms for optical loss in SOI waveguides for mid-infrared wavelengths around 2μm. Journal of Optics, 19, 025801(2017).

    [43] F Li, S D Jackson, C Grillet, et al. Low propagation loss silicon-on-sapphire waveguides for the mid-infrared. Optics Express, 19, 15212-15220(2011).

    [44] Z Cheng, X Chen, C Y Wong, et al. Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator. IEEE Photonics Journal, 4, 1510-1519(2012).

    [45] W Zhou, Z Cheng, X Wu, . et al. Fully suspended slot waveguides for high refractive index sensitivity. Optics Letters, 42, 1245-1248(2017).

    [46] X Chen, K Xu, Z Cheng, et al. Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers. Optics Letters, 37, 3483-3485(2012).

    [47] Z Cheng, X Chen, C Y Wong, . et al. Apodized focusing subwavelength grating couplers for suspended membrane waveguides. Applied Physics Letters, 101, 101104(2012).

    [48] Z Cheng, X Chen, C Y Wong, et al. Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide. Optics Letters, 37, 1217-1219(2012).

    [49] Z Cheng, X Chen, C Y Wong, et al. Broadband focusing grating couplers for suspended-membrane waveguides. Optics Letters, 37, 5181-5183(2012).

    [50] Z Cheng, Z Li, K Xu, . et al. Increase of the grating coupler bandwidth with a graphene overlay. Applied Physics Letters, 104, 111109(2014).

    [51] Z Cheng, H K Tsang. Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides. Optics Letters, 39, 2206-2209(2014).

    [52] W Zhou, Z Cheng, X Sun, et al. Tailorable dual-wavelength-band coupling in a transverse-electric-mode focusing subwavelength grating coupler. Optics Letters, 43, 2985-2988(2018).

    [53] Kuyken B, Hattasan N, Vermeulen D, et al. Highly efficient broadb silicononinsulat grating couplers f the sht wave infrared wavelength range [C]Integrated Photonics Research, Silicon Nanophotonics, 2011.

    [54] W Zhou, H K Tsang. Dual-wavelength-band subwavelength grating coupler operating in the near infrared and extended shortwave infrared. Optics Letters, 44, 3621-3624(2019).

    [55] R Guo, H Gao, T Liu, et al. Ultra-thin mid-infrared silicon grating coupler. Optics Letters, 47, 1226-1229(2022).

    [56] J Wang, Z Cheng, C Shu, et al. Optical absorption in graphene-on-silicon nitride microring resonators. IEEE Photonics Technology Letters, 27, 1765-1767(2015).

    [57] X Ke, Xinru Wu, Jiun-Yu Sung, et al. Amplitude and phase modulation of UWB monocycle pulses on a silicon photonic chip. IEEE Photonics Technology Letters, 28, 248-251(2016).

    [58] J Wang, X Zhang, Z Wei, et al. Design of a dual-mode graphene-on-microring resonator for optical gas sensing. IEEE Access, 9, 56479-56485(2021).

    [59] Yujie Hu, Shuxiao Wang, Dawei Wang, et al. Research progress of mid-infrared micro-ring resonator and its application. Laser & Optoelectronics Progress, 57, 230004(2020).

    [60] C Y Wong, Z Cheng, X Chen, et al. Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning. IEEE Photonics Journal, 4, 1095-1102(2012).

    [61] J Li, Y Liu, Y Meng, et al. 2 μm wavelength grating coupler, bent waveguide, and tunable microring on silicon photonic MPW. IEEE Photonics Technology Letters, 30, 471-474(2018).

    [62] Ke Xu, Yimin Chen, Chao Li, et al. An ultracompact OSNR monitor based on an integrated silicon microdisk resonator. IEEE Photonics Journal, 4, 1365-1371(2012).

    [63] L Zhang, D Dai. Silicon subwavelength-grating microdisks for optical sensing. IEEE Photonics Technology Letters, 31, 1209-1212(2019).

    [64] Z Xing, C Li, Y Han, et al. Waveguide-integrated graphene spatial mode filters for on-chip mode-division multiplexing. Optics Express, 27, 19188-19195(2019).

    [65] C Li, D Liu, D Dai. Multimode silicon photonics. Nanophotonics, 8, 227-247(2018).

    [66] C Sun, Y Ding, Z Li, . et al. Key multimode silicon photonic devices inspired by geometrical optics. ACS Photonics, 7, 2037-2045(2020).

    [67] Y Yu, G Chen, C Sima, . et al. Intra-chip optical interconnection based on polarization division multiplexing photonic integrated circuit. Optics Express, 25, 28330-28336(2017).

    [68] E Ryckeboer, A Gassenq, M Muneeb, . et al. Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm. Optics Express, 21, 6101-6108(2013).

    [69] Rouifed M S, Littlejohns C G, Tina G X, et al. Silicon photonic devices f the infrared [C]2017 Conference on Lasers ElectroOptics Pacific Rim, 2017: s2264.

    [70] M S Rouifed, C G Littlejohns, G X Tina, . et al. Ultra-compact MMI-based beam splitter demultiplexer for the NIR/MIR wavelengths of 1.55 μm and 2 μm. Optics Express, 25, 10893-10900(2017).

    [71] S Zheng, M Huang, X Cao, et al. Silicon-based four-mode division multiplexing for chip-scale optical data transmission in the 2  μm waveband. Photonics Research, 7, 1030-1035(2019).

    [72] C D Salzberg, J J Villa. Infrared refractive indexes of silicon germanium and modified Selenium glass. Journal of the Optical Society of America, 47, 244-246(1957).

    [73] X Liu, B Kuyken, G Roelkens, . et al. Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation. Nature Photonics, 6, 667-671(2012).

    [74] Kuyken B, Verheyen P, Tannouri P, et al. infrared generation by frequency downconversion across 1.2 octaves in a nmallydispersive silicon wire [C]Conference on Lasers ElectroOptics (CLEO), 2013: CTh1 F. 2.

    [75] X Liu, R M Osgood, Y A Vlasov, et al. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nature Photonics, 4, 557-560(2010).

    [76] B Kuyken, X Liu, R M Osgood, et al. A silicon-based widely tunable short-wave infrared optical parametric oscillator. Optics Express, 21, 5931-5940(2013).

    [77] B Kuyken, X Liu, R M Osgood, et al. Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides. Optics Express, 19, 20172-20181(2011).

    [78] N Singh, D D Hudson, Y Yu, et al. Midinfrared supercontinuum generation from 2 to 6  μm in a silicon nanowire. Optica, 2, 797-802(2015).

    [79] R Kou, T Hatakeyama, J Horng, et al. Mid-IR broadband supercontinuum generation from a suspended silicon waveguide. Optics Letters, 43, 1387-1390(2018).

    [80] A G Griffith, R K Lau, J Cardenas, . et al. Silicon-chip mid-infrared frequency comb generation. Nature Communications, 6, 6299(2015).

    [81] M Yu, Y Okawachi, A G Griffith, et al. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica, 3, 854-860(2016).

    [82] R Guo, W Chen, H Gao, et al. Is Ge an excellent material for mid-IR Kerr frequency combs around 3 μm wavelengths. Journal of Lightwave Technology, 40, 2097-2103(2022).

    [83] Camp M A Van, S Assefa, D M Gill, . et al. Demonstration of electrooptic modulation at 2165 nm using a silicon Mach-Zehnder interferometer. Optics Express, 20, 28009-28016(2012).

    [84] X Wang, W Shen, W Li, et al. High-speed silicon photonic Mach–Zehnder modulator at 2 μm. Photonics Research, 9, 535-540(2021).

    [85] W Cao, S Liu, C G Littlejohns, et al. High-speed silicon Michelson interferometer modulator and streamlined IMDD PAM-4 transmission of Mach-Zehnder modulators for the 2 μm wavelength band. Optics Express, 29, 14438-14451(2021).

    [86] J Wang, Q Li, D Huang, et al. Design of graphene-on-germanium waveguide electro-optic modulators at the 2 μm wavelength. OSA Continuum, 2, 749-758(2019).

    [87] G Yue, Z Xing, H Hu, et al. Graphene-based dual-mode modulators. Optics Express, 28, 18456-18471(2020).

    [88] H Zou, Y Wang, X Zhang, et al. Optimal design and preparation of silicon-organic hybrid integrated electro-optic modulator. Optics and Precision Engineering, 28, 2138-2150(2020).

    [89] C Zhong, H Ma, C Sun, et al. Fast thermo-optical modulators with doped-silicon heaters operating at 2 μm. Optics Express, 29, 23508-23516(2021).

    [90] M Nedeljkovic, R Soref, G Z Mashanovich. Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1-14-μm infrared wavelength range. IEEE Photonics Journal, 3, 1171-1180(2011).

    [91] Slater B, Johnson M H, Rosenfeld L, et al. Modelling waveguideintegrated superconducting nanowire single photon detects at shtwave infrared [C]2018 IEEE Photonics Society Summer Topical Meeting Series (SUM), 2018: 9394.

    [92] R R Grote, B Souhan, N Ophir, et al. Extrinsic photodiodes for integrated mid-infrared silicon photonics. Optica, 1, 264-267(2014).

    [93] N Hattasan, A Gassenq, L Cerutti, . et al. Heterogeneous integration of GaInAsSb p-i-n photodiodes on a silicon-on-insulator waveguide circuit. IEEE Photonics Technology Letters, 23, 1760-1762(2011).

    [94] Cong H, Xue C L, Zheng J, et al. Silicon based GeSn pin photodetect with longwave cutoff at 2.3 μm [C]2016 IEEE 13th International Conference on Group IV Photonics (GFP), 2016: 106107.

    [95] J Zhang, J Lv, Z Ni. Highly sensitive infrared detector based on a two-dimensional heterojunction. Chinese Optics, 14, 87-99(2021).

    [96] S Hu, R Tian, Gan X and. Two-dimensional material photodetector for hybrid silicon photonics. Chinese Optics, 14, 1039-1055(2021).

    [97] J Guo, J Li, C Liu, et al. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. Light: Science & Applications, 9, 1-11(2020).

    [98] B Souhan, R R Grote, C P Chen, et al. Si+-implanted Si-wire waveguide photodetectors for the mid-infrared. Optics Express, 22, 27415-27424(2014).

    [99] J J Ackert, D J Thomson, L Shen, et al. High-speed detection at two micrometres with monolithic silicon photodiodes. Nature Photonics, 9, 393-396(2015).

    Qi He, Yaru Wang, Weicheng Chen, Dian Wan, Si Chen, Haoran Gao, Rongxiang Guo, Yisheng Gao, Jiaqi Wang, Zhenzhou Cheng, Yu Yu, Tiegen Liu. Advances in short-wavelength mid-infrared silicon photonics (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220043
    Download Citation