• Acta Optica Sinica
  • Vol. 41, Issue 8, 0823014 (2021)
Xinliang Zhang1、* and Yanjing Zhao1、2
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information,Huazhong University of Science and Technology, Wuhan, Hubei 430074, China;
  • 2Department of Photonics Engineering, Technical University of Denmark, Lyngby DK- 2800, Denmark
  • show less
    DOI: 10.3788/AOS202141.0823014 Cite this Article Set citation alerts
    Xinliang Zhang, Yanjing Zhao. Research Progress of Microresonator-Based Optical Frequency Combs[J]. Acta Optica Sinica, 2021, 41(8): 0823014 Copy Citation Text show less
    References

    [1] Diddams S A. The evolving optical frequency comb[J]. Journal of the Optical Society of America B, 27, B51-B62(2010).

    [2] Spence D E, Kean P N, Sibbett W. 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser[J]. Optics Letters, 16, 42-44(1991). http://ptep.oxfordjournals.org/external-ref?access_num=10.1364/OL.16.000042&link_type=DOI

    [3] Tamura K, Ippen E P, Haus H A et al. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser[J]. Optics Letters, 18, 1080-1082(1993).

    [4] Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs[J]. Science, 332, 555-559(2011).

    [5] Pfeiffer M H P, Herkommer C, Liu J Q et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators[J]. Optica, 4, 684-691(2017). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-4-7-684

    [6] Li Q, Briles T C, Westly D A et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime[J]. Optica, 4, 193-203(2017). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-4-2-193

    [7] Zhang S Y. Silver J M, del Bino L, et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser[J]. Optica, 6, 206-212(2019).

    [8] Stern B, Ji X C, Okawachi Y et al. Battery-operated integrated frequency comb generator[J]. Nature, 562, 401-405(2018). http://d.wanfangdata.com.cn/periodical/59ff8cd6374e25b8a8b220d55b56ea24

    [9] Armani D K, Kippenberg T J, Spillane S M et al. Ultra-high-Q toroid microcavity on a chip[J]. Nature, 421, 925-928(2003).

    [10] Kippenberg T J, Spillane S M, Vahala K J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity[J]. Physical Review Letters, 93, 083904(2004). http://www.ncbi.nlm.nih.gov/pubmed/15447188

    [11] Del'Haye P, Schliesser A, Arcizet O et al. Optical frequency comb generation from a monolithic microresonator[J]. Nature, 450, 1214-1217(2007). http://www.ncbi.nlm.nih.gov/pubmed/18097405

    [12] Del'Haye P, Coillet A, Loh W et al. Phase steps and resonator detuning measurements in microresonator frequency combs[J]. Nature Communications, 6, 5668(2015). http://www.nature.com/articles/ncomms6668/

    [13] Li J, Lee H, Chen T et al. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs[J]. Physical Review Letters, 109, 233901(2012). http://www.ncbi.nlm.nih.gov/pubmed/23368202/

    [14] Saha K, Okawachi Y, Shim B et al. Modelocking and femtosecond pulse generation in chip-based frequency combs[J]. Optics Express, 21, 1335-1343(2013). http://www.ncbi.nlm.nih.gov/pubmed/23389027

    [15] Herr T, Brasch V, Jost J D et al. Temporal solitons in optical microresonators[J]. Nature Photonics, 8, 145-152(2014).

    [16] Kippenberg T J, Gaeta A L, Lipson M et al. 361(6402): eaan8083(2018).

    [17] Herr T, Hartinger K, Riemensberger J et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators[J]. Nature Photonics, 6, 480-487(2012). http://www.nature.com/nphoton/journal/v6/n7/abs/nphoton.2012.127.html

    [18] Chembo Y K, Yu N. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators[J]. Physical Review A, 82, 033801(2010). http://dx.doi.org/10.1103/physreva.82.033801

    [19] Hansson T, Modotto D, Wabnitz S. On the numerical simulation of Kerr frequency combs using coupled mode equations[J]. Optics Communications, 312, 134-136(2014).

    [20] Coen S, Randle H G, Sylvestre T et al. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model[J]. Optics Letters, 38, 37-39(2013). http://europepmc.org/abstract/MED/23282830

    [21] Lamont M R, Okawachi Y, Gaeta A L. Route to stabilized ultrabroadband microresonator-based frequency combs[J]. Optics Letters, 38, 3478-3481(2013). http://europepmc.org/abstract/MED/24104792

    [22] Bao C Y, Yang C X. Mode-pulling and phase-matching in broadband Kerr frequency comb generation[J]. Journal of the Optical Society of America B, 31, 3074-3080(2014).

    [23] Zhao Y J, Chen L, Hu H et al. Numerical investigation of parametric frequency dependence in the modeling of octave-spanning Kerr frequency combs[J]. IEEE Photonics Journal, 12, 6600509(2020). http://ieeexplore.ieee.org/document/9015962

    [24] Liang W, Eliyahu D, Ilchenko V S et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator[J]. Nature Communications, 6, 7957(2015). http://europepmc.org/articles/PMC4918344/

    [25] Yi X, Yang Q F, Yang K Y et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator[J]. Optica, 2, 1078-1085(2015). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-2-12-1078

    [26] Obrzud E, Lecomte S, Herr T. Temporal solitons in microresonators driven by optical pulses[J]. Nature Photonics, 11, 600-607(2017). http://ieeexplore.ieee.org/document/8083247/

    [27] Yang K Y, Oh D Y, Lee S H et al. Bridging ultrahigh-Q devices and photonic circuits[J]. Nature Photonics, 12, 297-302(2018).

    [28] Brasch V, Geiselmann M, Herr T et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation[J]. Science, 351, 357-360(2016). http://ui.adsabs.harvard.edu/abs/arXiv:1410.8598

    [29] Joshi C, Jang J K, Luke K et al. Thermally controlled comb generation and soliton modelocking in microresonators[J]. Optics Letters, 41, 2565-2568(2016). http://www.ncbi.nlm.nih.gov/pubmed/27244415

    [30] Wang P H. Jaramillo-Villegas J A, Xuan Y, et al. Intracavity characterization of micro-comb generation in the single-soliton regime[J]. Optics Express, 24, 10890-10897(2016).

    [31] Karpov M, Guo H R, Lucas E et al. Universal dynamics and controlled switching of dissipative Kerr solitons in optical microresonators[J]. Nature Physics, 13, 94-102(2017).

    [32] Yu M J, Okawachi Y, Griffith A G et al. Mode-locked mid-infrared frequency combs in a silicon microresonator[J]. Optica, 3, 854-860(2016).

    [33] Bao H L, Cooper A, Rowley M et al. Laser cavity-soliton microcombs[J]. Nature Photonics, 13, 384-389(2019). http://www.nature.com/articles/s41566-019-0379-5

    [34] Lu Z Z, Wang W Q, Zhang W F et al. Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator[J]. AIP Advances, 9, 025314(2019). http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.5080128

    [35] Zhao Y J, Chen L, Wang W Q et al. Repetition rate multiplication control of micro-combs assisted by perfect temporal Talbot effect[J]. APL Photonics, 5, 046102(2020). http://www.researchgate.net/publication/340411100_Repetition_rate_multiplication_control_of_micro-combs_assisted_by_perfect_temporal_Talbot_effect

    [36] Gong Z, Bruch A, Shen M H et al. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators[J]. Optics Letters, 43, 4366-4369(2018).

    [37] He Y, Yang Q F, Ling J W et al. Self-starting bi-chromatic LiNbO3 soliton microcomb[J]. Optica, 6, 1138-1144(2019). http://arxiv.org/abs/1812.09610

    [38] Chang L, Xie W, Shu H et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators[J]. Nature Communications, 11, 1331(2020).

    [39] Carmon T, Yang L, Vahala K. Dynamical thermal behavior and thermal self-stability of microcavities[J]. Optics Express, 12, 4742-4750(2004).

    [40] Wang W Q, Wang L R, Zhang W F. Advances in soliton microcomb generation[J]. Advanced Photonics, 2, 034001(2020). http://www.opticsjournal.net/Articles/Abstract?aid=OJ338ebd36dab84e66

    [41] Braginsky V B, Gorodetsky M L, Ilchenko V S. Quality-factor and nonlinear properties of optical whispering-gallery modes[J]. Physics Letters A, 137, 393-397(1989). http://www.sciencedirect.com/science/article/pii/0375960189909122

    [42] Brasch V, Geiselmann M, Pfeiffer M H et al. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state[J]. Optics Express, 24, 29312-29320(2016). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-24-25-29312

    [43] Karpov M, Guo H, Kordts A et al. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator[J]. Physical Review Letters, 116, 103902(2016).

    [44] Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs[J]. Nature Photonics, 13, 158-169(2019). http://www.nature.com/articles/s41566-019-0358-x

    [45] Barashenkov I V, Smirnov Y S. Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons[J]. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 54, 5707-5725(1996). http://www.ncbi.nlm.nih.gov/pubmed/9965759

    [46] Stone J R, Briles T C, Drake T E et al. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs[J]. Physical Review Letters, 121, 063902(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=dd581842a0822a38b33ee6b80d873b97

    [47] Volet N, Yi X, Yang Q F et al. Micro-resonator soliton generated directly with a diode laser[J]. Laser & Photonics Reviews, 12, 1700307(2018). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020419976762.html

    [48] Yi X, Yang Q F, Youl Yang K et al. Active capture and stabilization of temporal solitons in microresonators[J]. Optics Letters, 41, 2037-2040(2016). http://www.ncbi.nlm.nih.gov/pubmed/27128068

    [49] Xue X, Xuan Y, Wang C et al. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators[J]. Optics Express, 24, 687-698(2016). http://www.ncbi.nlm.nih.gov/pubmed/26832298

    [50] Raja A S, Liu J Q, Volet N et al. -06-04)[2020-09-26]. https:∥arxiv.org/abs/1906.03194v1.(2019).

    [51] Zhou H, Geng Y, Cui W W et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities[J]. Light: Science & Applications, 8, 50(2019). http://www.researchgate.net/publication/333449656_Soliton_bursts_and_deterministic_dissipative_Kerr_soliton_generation_in_auxiliary-assisted_microcavities

    [52] Pavlov N G, Koptyaev S, Lihachev G V et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes[J]. Nature Photonics, 12, 694-698(2018). http://www.nature.com/articles/s41566-018-0277-2

    [53] Vassiliev V V, Velichansky V L, Ilchenko V S et al. Narrow-line-width diode laser with a high-Q microsphere resonator[J]. Optics Communications, 158, 305-312(1998). http://www.sciencedirect.com/science/article/pii/S0030401898005781

    [54] Kondratiev N M, Lobanov V E, Cherenkov A V et al. Self-injection locking of a laser diode to a high-Q WGM microresonator[J]. Optics Express, 25, 28167(2017). http://adsabs.harvard.edu/abs/2017OExpr..2528167K

    [55] Shen B Q, Chang L, Liu J Q et al. Integrated turnkey soliton microcombs[J]. Nature, 582, 365-369(2020). http://www.nature.com/articles/s41586-020-2358-x?proof=t

    [56] Cole D C, Stone J R, Erkintalo M et al. Kerr-microresonator solitons from a chirped background[J]. Optica, 5, 1304-1310(2018). http://arxiv.org/abs/1807.03323

    [57] Obrzud E, Rainer M, Harutyunyan A et al. A microphotonic astrocomb[J]. Nature Photonics, 13, 31-35(2019).

    [58] Weng W L, Kaszubowska-Anandarajah A, He J J et al. -06-18)[2020-09-26]. https:∥arxiv., org/abs/2006, 10662(2020).

    [59] Stern L, Stone J R, Kang S, stabilization[J]. Science Advances et al. 6(9): eaax6230(2020).

    [60] Liu J, Tian H, Lucas E et al. Monolithic piezoelectric control of soliton microcombs[J]. Nature, 583, 385-390(2020).

    [61] Yi X, Yang Q F, Yang K Y et al. Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities[J]. Optics Letters, 41, 3419-3422(2016).

    [62] Yang Q F, Yi X, Yang K Y et al. Stokes solitons in optical microcavities[J]. Nature Physics, 13, 53-57(2017).

    [63] Wang S, Guo H, Bai X et al. Broadband Kerr frequency combs and intracavity soliton dynamics influenced by high-order cavity dispersion[J]. Optics Letters, 39, 2880-2883(2014).

    [64] Yang Q F, Yi X, Yang K Y et al. Spatial-mode-interaction-induced dispersive waves and their active tuning in microresonators[J]. Optica, 3, 1132-1135(2016).

    [65] Bao C Y, Xuan Y, Leaird D E et al. Spatial mode-interaction induced single soliton generation in microresonators[J]. Optica, 4, 1011-1015(2017).

    [66] Guo H R, Lucas E. Pfeiffer M H P, et al. Inter-mode breather solitons in optical microresonators. [C]∥CLEO Pacific Rim Conference, July 29-August 3, 2018, Hong Kong, China. Washington, DC: OSA, W1B, 2(2018).

    [67] Lucas E, Guo H R, Jost J D et al. Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators[J]. Physical Review A, 95, 043822(2017).

    [68] Yi X, Yang Q F, Zhang X Y et al. Single mode dispersive waves and soliton microcomb dynamics[J]. Nature Communications, 8, 14869(2017).

    [69] Bao C Y. Jaramillo-Villegas J A, Xuan Y, et al. Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator[J]. Physical Review Letters, 117, 163901(2016).

    [70] Yu M J, Jang J K, Okawachi Y et al. Breather soliton dynamics in microresonators[J]. Nature Communications, 8, 14569(2017).

    [71] Lucas E, Karpov M, Guo H et al. Breathing dissipative solitons in optical microresonators[J]. Nature Communications, 8, 736(2017).

    [72] Weng W L, Bouchand R, Lucas E et al. Heteronuclear soliton molecules in optical microresonators[J]. Nature Communications, 11, 2402(2020).

    [73] Cole D C, Lamb E S. Del'Haye P, et al. Soliton crystals in Kerr resonators[J]. Nature Photonics, 11, 671-676(2017).

    [74] Karpov M. Pfeiffer M H P, Guo H R, et al. Dynamics of soliton crystals in optical microresonators[J]. Nature Physics, 15, 1071-1077(2019).

    [75] He Y, Ling J W, Li M X et al. Perfect soliton crystals on demand[J]. Laser & Photonics Reviews, 14, 1900339(2020).

    [76] Yang Q F, Yi X, Yang K Y et al. Counter-propagating solitons in microresonators[J]. Nature Photonics, 11, 560-564(2017).

    [77] Lucas E, Lihachev G, Bouchand R et al. Spatial multiplexing of soliton microcombs[J]. Nature Photonics, 12, 699-705(2018).

    [78] Jang J K, Klenner A, Ji X C et al. Synchronization of coupled optical microresonators[J]. Nature Photonics, 12, 688-693(2018).

    [79] Xue X X, Xuan Y, Wang P H et al. Normal-dispersion microcombs enabled by controllable mode interactions[J]. Laser & Photonics Reviews, 9, L23-L28(2015).

    [81] Yi X, Yang Q F, Yang K Y et al. Imaging soliton dynamics in optical microcavities[J]. Nature Communications, 9, 3565(2018).

    [82] Li B, Huang S W, Li Y et al. Panoramic-reconstruction temporal imaging for seamless measurements of slowly-evolved femtosecond pulse dynamics[J]. Nature Communications, 8, 61(2017).

    [83] Chen L, Zhao Y J, Wang W Q et al. Ultrafast soliton dynamics of micro-combs observed by aberration-free temporal magnifier. [C]∥Conference on Lasers and Electro-Optics, May 10-15, 2020, Washington, DC. Washington, DC: OSA, JW2F, 30(2020).

    [84] Dorrer C, Maywar D N. RF spectrum analysis of optical signals using nonlinear optics[J]. Journal of Lightwave Technology, 22, 266-274(2004).

    [85] Wang R, Chen L, Hu H et al. Precise dynamic characterization of microcombs assisted by an RF spectrum analyzer with THz bandwidth and MHz resolution[J]. Optics Express, 29, 2153-2161(2020).

    [86] Del'Haye P, Coillet A, Fortier T et al. Phase-coherent microwave-to-optical link with a self-referenced microcomb[J]. Nature Photonics, 10, 516-520(2016).

    [87] Newman Z L, Maurice V, Drake T E et al. Architecture for the photonic integration of an optical atomic clock[J]. Optica, 6, 680-685(2019).

    [88] Marin-Palomo P, Kemal J N, Karpov M et al. Microresonator-based solitons for massively parallel coherent optical communications[J]. Nature, 546, 274-279(2017).

    [89] Mazur M, Suh M G, Fülöp A et al. -12-22)[2020-09-26]. https:∥arxiv.org/abs/1812.11046v1.(2018).

    [90] Spencer D T, Drake T, Briles T C et al. An optical-frequency synthesizer using integrated photonics[J]. Nature, 557, 81-85(2018).

    [91] Hu H, Chen L, Wang R L et al. Wideband high-resolution spectral analysis assisted by soliton micro-combs. [C]∥Conference on Lasers and Electro-Optics, May 10-15, 2020, Washington, DC. Washington, DC: OSA, JW2B, 31(2020).

    [92] Yang Q F, Suh M G, Yang K Y et al. Microresonator soliton dual-comb spectroscopy. [C]∥Science and Innovations 2017, May 14-19, 2017, San Jose, California. Washington, DC: OSA, SM4D, 4(2017).

    [93] Pavlov N G, Lihachev G, Koptyaev S et al. Soliton dual frequency combs in crystalline microresonators[J]. Optics Letters, 42, 514-517(2017).

    [94] Dutt A, Joshi C, Ji X et al. On-chip dual comb source for spectroscopy[J]. Science Advances, 4, e1701858(2018).

    [95] Yu M J, Okawachi Y, Griffith A G et al. Silicon-chip-based mid-infrared dual-comb spectroscopy[J]. Nature Communications, 9, 1869(2018).

    [96] Yang Q F, Shen B, Wang H et al. 363(6430): eaaw2317(2019).

    [97] Suh M G, Vahala K J. Soliton microcomb range measurement[J]. Science, 359, 884-887(2018).

    [98] Trocha P, Karpov M, Ganin D et al. Ultrafast optical ranging using microresonator soliton frequency combs[J]. Science, 359, 887-891(2018).

    [99] Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications[J]. Communications Physics, 3, 85(2020).

    [100] Reichert J, Holzwarth R, Udem T et al. Measuring the frequency of light with mode-locked lasers[J]. Optics Communications, 172, 59-68(1999).

    [101] Telle H R, Steinmeyer G, Dunlop A E et al. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation[J]. Applied Physics B, 69, 327-332(1999).

    [102] Brasch V, Lucas E, Jost J D et al. Self-referenced photonic chip soliton Kerr frequency comb[J]. Light: Science & Applications, 6, e16202(2017).

    [103] Lamb E S, Carlson D R, Hickstein D D et al. Optical-frequency measurements with a Kerr microcomb and photonic-chip supercontinuum[J]. Physical Review Applied, 9, 024030(2018).

    [104] Puppe T, Sell A, Kliese R et al. Characterization of a DFG comb showing quadratic scaling of the phase noise with frequency[J]. Optics Letters, 41, 1877-1880(2016).

    [105] Newbury N R, Swann W C. Low-noise fiber-laser frequency combs[J]. Journal of the Optical Society of America B, 24, 1756-1770(2007).

    [106] Chen D Y, Kovach A, Poust S et al. Normal dispersion silicon oxynitride microresonator Kerr frequency combs[J]. Applied Physics Letters, 115, 051105(2019).

    [107] Kovach A, Chen D Y, He J H et al. Emerging material systems for integrated optical Kerr frequency combs[J]. Advances in Optics and Photonics, 12, 135-222(2020).

    [108] Wu L E, Wang H M, Yang Q F et al. On-chip Q-factor greater than 1 billion. [C]∥Conference on Lasers and Electro-Optics, May 10-15, 2020, Washington, DC. Washington, DC: OSA, SW3J, 7(2020).

    [109] Xue X X, Zheng X P, Zhou B K. Super-efficient temporal solitons in mutually coupled optical cavities[J]. Nature Photonics, 13, 616-622(2019). http://www.nature.com/articles/s41566-019-0436-0

    [110] Kim B Y, Okawachi Y, Jang J K et al. Turn-key, high-efficiency Kerr comb source[J]. Optics Letters, 44, 4475-4478(2019).

    [111] Lee S H, Oh D Y, Yang Q F et al. Towards visible soliton microcomb generation[J]. Nature Communications, 8, 1295(2017).

    [112] Wang W Q, Zhang W F, Chu S T et al. Repetition rate multiplication pulsed laser source based on a microring resonator[J]. ACS Photonics, 4, 1677-1683(2017).

    Xinliang Zhang, Yanjing Zhao. Research Progress of Microresonator-Based Optical Frequency Combs[J]. Acta Optica Sinica, 2021, 41(8): 0823014
    Download Citation