• Laser & Optoelectronics Progress
  • Vol. 60, Issue 11, 1106006 (2023)
Minghong Yang*, Yongxin Ye, Qilu Nie, Zhixiong Liu, Meng'en Cheng, and Donglai Guo
Author Affiliations
  • National Engineering Research Center of Fiber Optic Sensing Technology and Networks,Wuhan University of Technology, Wuhan 430070, Hubei, China
  • show less
    DOI: 10.3788/LOP230698 Cite this Article Set citation alerts
    Minghong Yang, Yongxin Ye, Qilu Nie, Zhixiong Liu, Meng'en Cheng, Donglai Guo. Review on Research Progress of Optical Fiber Sensing Technology in Energy Storage Battery Performance Monitoring[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106006 Copy Citation Text show less
    References

    [1] Dai B H, Wang D L, Cao Y et al. China’s energy industry: 2022 review and 2023 prospect[J]. Petroleum & Petrochemical Today, 31, 2-9(2023).

    [2] Wang Y. Carbon peak, carbon neutralization goal and china’s new energy revolution[J]. Social Sciences Digest, 5-7(2022).

    [3] Rao Y, Zang S S. Calibrations and the measurement uncertainty of wide-band liquid crystal thermography[J]. Measurement Science and Technology, 21, 015105(2010).

    [4] Giuliano M R, Advani S G, Prasad A K. Thermal analysis and management of lithium-titanate batteries[J]. Journal of Power Sources, 196, 6517-6524(2011).

    [5] Goutam S, Timmermans J M, Omar N et al. Comparative study of surface temperature behavior of commercial Li-ion pouch cells of different chemistries and capacities by infrared thermography[J]. Energies, 8, 8175-8192(2015).

    [6] Kosch S, Rheinfeld A, Erhard S V et al. An extended polarization model to study the influence of current collector geometry of large-format lithium-ion pouch cells[J]. Journal of Power Sources, 342, 666-676(2017).

    [7] Robinson J B, Darr J A, Eastwood D S et al. Non-uniform temperature distribution in Li-ion batteries during discharge-a combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach[J]. Journal of Power Sources, 252, 51-57(2014).

    [8] Cumming D J, Elder R H. Thermal imaging of solid oxide cells operating under electrolysis conditions[J]. Journal of Power Sources, 280, 387-392(2015).

    [9] Jen L S, Yuan L, Yu C M et al. Lithium-ion battery module temperature monitoring by using planer home-made micro thermocouples[J]. International Journal of Electrochemical Science, 8, 4131-4141(2013).

    [10] Mutyala M S K, Zhao J Z, Li J Y et al. In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples[J]. Journal of Power Sources, 260, 43-49(2014).

    [11] Wang C H, Lin T, Huang J T et al. Temperature response of a high power lithium-ion battery subjected to high current discharge[J]. Materials Research Innovations, 19, S2-156(2015).

    [12] Cao J A, Emadi A. Batteries need electronics[J]. IEEE Industrial Electronics Magazine, 5, 27-35(2011).

    [13] Childs P R N, Greenwood J R, Long C A. Review of temperature measurement[J]. Review of Scientific Instruments, 71, 2959-2978(2000).

    [14] Rad M S, Danilov D L, Baghalha M et al. Adaptive thermal modeling of Li-ion batteries[J]. Electrochimica Acta, 102, 183-195(2013).

    [15] Daud Z H C, Chrenko D, Dos Santos F et al. 3D electro-thermal modelling and experimental validation of lithium polymer-based batteries for automotive applications[J]. International Journal of Energy Research, 40, 1144-1154(2016).

    [16] Wang P D, Zhang X Y, Yang L et al. Real-time monitoring of internal temperature evolution of the lithium-ion coin cell battery during the charge and discharge process[J]. Extreme Mechanics Letters, 9, 459-466(2016).

    [17] Wang X M, Sone Y, Segami G et al. Understanding volume change in lithium-ion cells during charging and discharging using in situ measurements[J]. Journal of The Electrochemical Society, 154, A14-A21(2007).

    [18] Kirchev A, Guillet N, Brun-Buission D et al. Li-ion cell safety monitoring using mechanical parameters: part I. Normal battery operation[J]. Journal of the Electrochemical Society, 169, 010515(2022).

    [19] Hickey R, Jahns T M. Measuring individual battery dimensional changes for state-of-charge estimation using strain gauge sensors[C], 2460-2465(2019).

    [20] Cannarella J, Arnold C B. Stress evolution and capacity fade in constrained lithium-ion pouch cells[J]. Journal of Power Sources, 245, 745-751(2014).

    [21] Li W, Xia Y, Zhu J E et al. State-of-charge dependence of mechanical response of lithium-ion batteries: a result of internal stress[J]. Journal of the Electrochemical Society, 165, A1537-A1546(2018).

    [22] Leung P K, Moreno C, Masters I et al. Real-time displacement and strain mappings of lithium-ion batteries using three-dimensional digital image correlation[J]. Journal of Power Sources, 271, 82-86(2014).

    [23] Jones E M C, Silberstein M N, White S R et al. In situ measurements of strains in composite battery electrodes during electrochemical cycling[J]. Experimental Mechanics, 54, 971-985(2014).

    [24] Louli A J, Ellis L D, Dahn J R. Operando pressure measurements reveal solid electrolyte interphase growth to rank Li-ion cell performance[J]. Joule, 3, 745-761(2019).

    [25] Verde M G, Baggetto L, Balke N et al. Elucidating the phase transformation of Li4Ti5O12 lithiation at the nanoscale[J]. ACS Nano, 10, 4312-4321(2016).

    [26] Yu X H, Feng Z L, Ren Y et al. Simultaneous operando measurements of the local temperature, state of charge, and strain inside a commercial lithium-ion battery pouch cell[J]. Journal of the Electrochemical Society, 165, A1578-A1585(2018).

    [27] Li L X, Xie Y Y, Maxey E et al. Methods for operando coherent X-ray diffraction of battery materials at the Advanced Photon Source[J]. Journal of Synchrotron Radiation, 26, 220-229(2019).

    [28] Esser M, Rohde G, Rehtanz C. Electrochemical impedance spectroscopy setup based on standard measurement equipment[J]. Journal of Power Sources, 544, 231869(2022).

    [29] Westerhoff U, Kroker T, Kurbach K et al. Electrochemical impedance spectroscopy based estimation of the state of charge of lithium-ion batteries[J]. Journal of Energy Storage, 8, 244-256(2016).

    [30] Zhang Q M, Huang C G, Li H et al. Electrochemical impedance spectroscopy based state-of-health estimation for lithium-ion battery considering temperature and state-of-charge effect[J]. IEEE Transactions on Transportation Electrification, 8, 4633-4645(2022).

    [31] Babaeiyazdi I, Rezaei-Zare A, Shokrzadeh S. State of charge prediction of EV Li-ion batteries using EIS: a machine learning approach[J]. Energy, 223, 120116(2021).

    [32] Chemali E, Kollmeyer P J, Preindl M et al. Long short-term memory networks for accurate state-of-charge estimation of Li-ion batteries[J]. IEEE Transactions on Industrial Electronics, 65, 6730-6739(2018).

    [33] Zou Y, Hu X S, Ma H M et al. Combined state of charge and state of health estimation over lithium-ion battery cell cycle lifespan for electric vehicles[J]. Journal of Power Sources, 273, 793-803(2015).

    [34] He H W, Xiong R, Fan J X. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach[J]. Energies, 4, 582-598(2011).

    [35] Li Y Z, Li Y B, Pei A L et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 358, 506-510(2017).

    [36] Guo R, Lu L G, Ouyang M G et al. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries[J]. Scientific Reports, 6, 1-9(2016).

    [37] Pieczonka N P W, Liu Z Y, Lu P et al. Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries[J]. The Journal of Physical Chemistry C, 117, 15947-15957(2013).

    [38] Mehdi B L, Qian J, Nasybulin E et al. Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM[J]. Nano Letters, 15, 2168-2173(2015).

    [39] Wenger M, Waller R, Lorentz V R H et al. Investigation of gas sensing in large lithium-ion battery systems for early fault detection and safety improvement[C], 5654-5659(2015).

    [40] Berkes B B, Jozwiuk A, Sommer H et al. Simultaneous acquisition of differential electrochemical mass spectrometry and infrared spectroscopy data for in situ characterization of gas evolution reactions in lithium-ion batteries[J]. Electrochemistry Communications, 60, 64-69(2015).

    [41] Cheng X M, Pecht M. In situ stress measurement techniques on Li-ion battery electrodes: a review[J]. Energies, 10, 591(2017).

    [42] Rivera-Barrera J, Muñoz-Galeano N, Sarmiento-Maldonado H. SoC estimation for lithium-ion batteries: review and future challenges[J]. Electronics, 6, 102(2017).

    [43] Tian H X, Qin P L, Li K et al. A review of the state of health for lithium-ion batteries: research status and suggestions[J]. Journal of Cleaner Production, 261, 120813(2020).

    [44] Hodgkinson J, Tatam R P. Optical gas sensing: a review[J]. Measurement Science and Technology, 24, 012004(2013).

    [45] Sahota J K, Gupta N, Dhawan D. Fiber Bragg grating sensors for monitoring of physical parameters: a comprehensive review[J]. Optical Engineering, 59, 060901(2020).

    [46] Campanella C E, Cuccovillo A, Campanella C et al. Fibre Bragg grating based strain sensors: review of technology and applications[J]. Sensors, 18, 3115(2018).

    [47] Liu S, Zeng Q, Li C C et al. Application of quasi-distributed high temperature sensor based on femtosecond fiber Bragg grating[J]. Laser & Optoelectronics Progress, 59, 0106007(2022).

    [48] Yang G, Leitão C, Li Y H et al. Real-time temperature measurement with fiber Bragg sensors in lithium batteries for safety usage[J]. Measurement, 46, 3166-3172(2013).

    [49] Novais S, Nascimento M, Grande L et al. Internal and external temperature monitoring of a Li-ion battery with fiber Bragg grating sensors[J]. Sensors, 16, 1394(2016).

    [50] Nascimento M, Ferreira M S, Pinto J L. Real time thermal monitoring of lithium batteries with fiber sensors and thermocouples: a comparative study[J]. Measurement, 111, 260-263(2017).

    [51] Liu Y B, Liu Z, Mei W X et al. Operando monitoring Lithium-ion battery temperature via implanting femtosecond-laser-inscribed optical fiber sensors[J]. Measurement, 203, 111961(2022).

    [52] Zhao Y, Liao Y B. Discrimination methods and demodulation techniques for fiber Bragg grating sensors[J]. Optics and Lasers in Engineering, 41, 1-18(2004).

    [53] Zhang L, Liu X, Li K et al. Real-time battery temperature monitoring using FBG sensors: a data-driven calibration method[J]. IEEE Sensors Journal, 22, 18639-18648(2022).

    [54] Huang J W, Liu T. Review of research on optical fiber fluorescence temperature probes[J]. Laser & Optoelectronics Progress, 59, 1516023(2022).

    [55] Li H Y, Wei F, Li Y Z et al. Optical fiber sensor based on upconversion nanoparticles for internal temperature monitoring of Li-ion batteries[J]. Journal of Materials Chemistry C, 9, 14757-14765(2021).

    [56] Fujimoto S, Uemura S, Imanishi N et al. Oxygen concentration measurement in the porous cathode of a lithium-air battery using a fine optical fiber sensor[J]. Mechanical Engineering Letters, 5, 19-95(2019).

    [57] Macchi E G, Tosi D, Braschi G et al. Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution[J]. Journal of Biomedical Optics, 19, 117004(2014).

    [58] Thomas P J, Hellevang J O. A high response polyimide fiber optic sensor for distributed humidity measurements[J]. Sensors and Actuators B: Chemical, 270, 417-423(2018).

    [59] Liu T, Li H, Ai F et al. Ultra-high resolution distributed strain sensing based on phase-OTDR[C](2019).

    [60] Lu P, Lalam N, Badar M et al. Distributed optical fiber sensing: review and perspective[J]. Applied Physics Reviews, 6, 041302(2019).

    [61] Vergori E, Yu Y F. Monitoring of Li-ion cells with distributed fibre optic sensors[J]. Procedia Structural Integrity, 24, 233-239(2019).

    [62] Yu Y F, Vergori E, Worwood D et al. Distributed thermal monitoring of lithium ion batteries with optical fibre sensors[J]. Journal of Energy Storage, 39, 102560(2021).

    [63] Yu Y F, Vincent T, Sansom J et al. Distributed internal thermal monitoring of lithium ion batteries with fibre sensors[J]. Journal of Energy Storage, 50, 104291(2022).

    [64] Koerver R, Zhang W B, de Biasi L et al. Chemo-mechanical expansion of lithium electrode materials–on the route to mechanically optimized all-solid-state batteries[J]. Energy & Environmental Science, 11, 2142-2158(2018).

    [65] Sommer L W, Kiesel P, Ganguli A et al. Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors[J]. Journal of Power Sources, 296, 46-52(2015).

    [66] Bae C J, Manandhar A, Kiesel P et al. Monitoring the strain evolution of lithium-ion battery electrodes using an optical fiber Bragg grating sensor[J]. Energy Technology, 4, 851-855(2016).

    [67] Li Y P, Zhang Y, Li Z et al. Operando decoding of surface strain in anode-free lithium metal batteries via optical fiber sensor[J]. Advanced Science, 9, 2203247(2022).

    [68] Peng J, Zhou X, Jia S H et al. High precision strain monitoring for lithium ion batteries based on fiber Bragg grating sensors[J]. Journal of Power Sources, 433, 226692(2019).

    [69] Flores R, Janeiro R, Viegas J. Optical fibre Fabry-Pérot interferometer based on inline microcavities for salinity and temperature sensing[J]. Scientific Reports, 9, 9556(2019).

    [70] Zhu C, Huang J. A miniaturized optical fiber tip high-temperature sensor based on concave-shaped Fabry-Perot cavity[J]. Proceedings of SPIE, 10982, 1098236(2019).

    [71] Peng M, Lu Z Q, Liu C N. Fiber optic sensor for simultaneous measurement of three parameters in FP cavity and MZI cascade[J]. Acta Optica Sinica, 43, 0106003(2023).

    [72] Duan D W, Rao Y J, Hou Y S et al. Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement[J]. Applied Optics, 51, 1033-1036(2012).

    [73] Sun B, Wang Y P, Qu J L et al. Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet[J]. Optics Express, 23, 1906-1911(2015).

    [74] Nascimento M, Novais S, Ding M S et al. Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries[J]. Journal of Power Sources, 410/411, 1-9(2019).

    [75] Leung A, Shankar P M, Mutharasan R. A review of fiber-optic biosensors[J]. Sensors and Actuators B: Chemical, 125, 688-703(2007).

    [76] Feng D J, Zhang M S, Liu G X et al. D-shaped plastic optical fiber sensor for testing refractive index[J]. IEEE Sensors Journal, 14, 1673-1676(2014).

    [77] Wu Y H, Deng X H, Li F et al. Less-mode optic fiber evanescent wave absorbing sensor: parameter design for high sensitivity liquid detection[J]. Sensors and Actuators B: Chemical, 122, 127-133(2007).

    [78] Vijayan A, Fuke M, Hawaldar R et al. Optical fibre based humidity sensor using co-polyaniline clad[J]. Sensors and Actuators B: Chemical, 129, 106-112(2008).

    [79] Batumalay M, Harith Z, Rafaie H A et al. Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity[J]. Sensors and Actuators A: Physical, 210, 190-196(2014).

    [80] Ghannoum A, Norris R C, Iyer K et al. Optical characterization of commercial lithiated graphite battery electrodes and in situ fiber optic evanescent wave spectroscopy[J]. ACS Applied Materials & Interfaces, 8, 18763-18769(2016).

    [81] Ghannoum A, Iyer K, Nieva P et al. Fiber optic monitoring of lithium-ion batteries: a novel tool to understand the lithiation of batteries[C](2017).

    [82] Ghannoum A, Nieva P, Yu A P et al. Development of embedded fiber-optic evanescent wave sensors for optical characterization of graphite anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 9, 41284-41290(2017).

    [83] Ghannoum A, Nieva P. Graphite lithiation and capacity fade monitoring of lithium ion batteries using optical fibers[J]. Journal of Energy Storage, 28, 101233(2020).

    [84] Lao J J, Sun P, Liu F et al. In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage[J]. Light: Science & Applications, 7, 1-11(2018).

    [85] Qian S Y, Chen X L, Jiang S Y et al. Direct detection of charge and discharge process in supercapacitor by fiber-optic LSPR sensors[J]. Nanophotonics, 9, 1071-1079(2020).

    [86] Cao-Paz A M, Marcos-Acevedo J, del Río-Vázquez A et al. A multi-point sensor based on optical fiber for the measurement of electrolyte density in lead-acid batteries[J]. Sensors, 10, 2587-2608(2010).

    [87] Nedjalkov A, Meyer J, Gräfenstein A et al. Refractive index measurement of lithium ion battery electrolyte with etched surface cladding waveguide Bragg gratings and cell electrode state monitoring by optical strain sensors[J]. Batteries, 5, 30(2019).

    [88] Tanaka N, Bessler W G. Numerical investigation of kinetic mechanism for runaway thermo-electrochemistry in lithium-ion cells[J]. Solid State Ionics, 262, 70-73(2014).

    [89] Lochbaum A, Kiesel P, Wilko L et al. Embedded fiber optic chemical sensing for internal cell side-reaction monitoring in advanced battery management systems[J]. MRS Online Proceedings Library, 1681, 8-13(2014).

    [90] Li Z S, Wang S C, Bin W et al. Design of in situ monitor system for lithium-ion battery based on multifunctional fiber[J]. Proceedings of SPIE, 10846, 108460N(2018).

    Minghong Yang, Yongxin Ye, Qilu Nie, Zhixiong Liu, Meng'en Cheng, Donglai Guo. Review on Research Progress of Optical Fiber Sensing Technology in Energy Storage Battery Performance Monitoring[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106006
    Download Citation