[1] Dai B H, Wang D L, Cao Y et al. China’s energy industry: 2022 review and 2023 prospect[J]. Petroleum & Petrochemical Today, 31, 2-9(2023).
[2] Wang Y. Carbon peak, carbon neutralization goal and china’s new energy revolution[J]. Social Sciences Digest, 5-7(2022).
[3] Rao Y, Zang S S. Calibrations and the measurement uncertainty of wide-band liquid crystal thermography[J]. Measurement Science and Technology, 21, 015105(2010).
[4] Giuliano M R, Advani S G, Prasad A K. Thermal analysis and management of lithium-titanate batteries[J]. Journal of Power Sources, 196, 6517-6524(2011).
[5] Goutam S, Timmermans J M, Omar N et al. Comparative study of surface temperature behavior of commercial Li-ion pouch cells of different chemistries and capacities by infrared thermography[J]. Energies, 8, 8175-8192(2015).
[6] Kosch S, Rheinfeld A, Erhard S V et al. An extended polarization model to study the influence of current collector geometry of large-format lithium-ion pouch cells[J]. Journal of Power Sources, 342, 666-676(2017).
[7] Robinson J B, Darr J A, Eastwood D S et al. Non-uniform temperature distribution in Li-ion batteries during discharge-a combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach[J]. Journal of Power Sources, 252, 51-57(2014).
[8] Cumming D J, Elder R H. Thermal imaging of solid oxide cells operating under electrolysis conditions[J]. Journal of Power Sources, 280, 387-392(2015).
[9] Jen L S, Yuan L, Yu C M et al. Lithium-ion battery module temperature monitoring by using planer home-made micro thermocouples[J]. International Journal of Electrochemical Science, 8, 4131-4141(2013).
[10] Mutyala M S K, Zhao J Z, Li J Y et al. In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples[J]. Journal of Power Sources, 260, 43-49(2014).
[11] Wang C H, Lin T, Huang J T et al. Temperature response of a high power lithium-ion battery subjected to high current discharge[J]. Materials Research Innovations, 19, S2-156(2015).
[12] Cao J A, Emadi A. Batteries need electronics[J]. IEEE Industrial Electronics Magazine, 5, 27-35(2011).
[13] Childs P R N, Greenwood J R, Long C A. Review of temperature measurement[J]. Review of Scientific Instruments, 71, 2959-2978(2000).
[14] Rad M S, Danilov D L, Baghalha M et al. Adaptive thermal modeling of Li-ion batteries[J]. Electrochimica Acta, 102, 183-195(2013).
[15] Daud Z H C, Chrenko D, Dos Santos F et al. 3D electro-thermal modelling and experimental validation of lithium polymer-based batteries for automotive applications[J]. International Journal of Energy Research, 40, 1144-1154(2016).
[16] Wang P D, Zhang X Y, Yang L et al. Real-time monitoring of internal temperature evolution of the lithium-ion coin cell battery during the charge and discharge process[J]. Extreme Mechanics Letters, 9, 459-466(2016).
[17] Wang X M, Sone Y, Segami G et al. Understanding volume change in lithium-ion cells during charging and discharging using in situ measurements[J]. Journal of The Electrochemical Society, 154, A14-A21(2007).
[18] Kirchev A, Guillet N, Brun-Buission D et al. Li-ion cell safety monitoring using mechanical parameters: part I. Normal battery operation[J]. Journal of the Electrochemical Society, 169, 010515(2022).
[19] Hickey R, Jahns T M. Measuring individual battery dimensional changes for state-of-charge estimation using strain gauge sensors[C], 2460-2465(2019).
[20] Cannarella J, Arnold C B. Stress evolution and capacity fade in constrained lithium-ion pouch cells[J]. Journal of Power Sources, 245, 745-751(2014).
[21] Li W, Xia Y, Zhu J E et al. State-of-charge dependence of mechanical response of lithium-ion batteries: a result of internal stress[J]. Journal of the Electrochemical Society, 165, A1537-A1546(2018).
[22] Leung P K, Moreno C, Masters I et al. Real-time displacement and strain mappings of lithium-ion batteries using three-dimensional digital image correlation[J]. Journal of Power Sources, 271, 82-86(2014).
[23] Jones E M C, Silberstein M N, White S R et al. In situ measurements of strains in composite battery electrodes during electrochemical cycling[J]. Experimental Mechanics, 54, 971-985(2014).
[24] Louli A J, Ellis L D, Dahn J R. Operando pressure measurements reveal solid electrolyte interphase growth to rank Li-ion cell performance[J]. Joule, 3, 745-761(2019).
[25] Verde M G, Baggetto L, Balke N et al. Elucidating the phase transformation of Li4Ti5O12 lithiation at the nanoscale[J]. ACS Nano, 10, 4312-4321(2016).
[26] Yu X H, Feng Z L, Ren Y et al. Simultaneous operando measurements of the local temperature, state of charge, and strain inside a commercial lithium-ion battery pouch cell[J]. Journal of the Electrochemical Society, 165, A1578-A1585(2018).
[27] Li L X, Xie Y Y, Maxey E et al. Methods for operando coherent X-ray diffraction of battery materials at the Advanced Photon Source[J]. Journal of Synchrotron Radiation, 26, 220-229(2019).
[28] Esser M, Rohde G, Rehtanz C. Electrochemical impedance spectroscopy setup based on standard measurement equipment[J]. Journal of Power Sources, 544, 231869(2022).
[29] Westerhoff U, Kroker T, Kurbach K et al. Electrochemical impedance spectroscopy based estimation of the state of charge of lithium-ion batteries[J]. Journal of Energy Storage, 8, 244-256(2016).
[30] Zhang Q M, Huang C G, Li H et al. Electrochemical impedance spectroscopy based state-of-health estimation for lithium-ion battery considering temperature and state-of-charge effect[J]. IEEE Transactions on Transportation Electrification, 8, 4633-4645(2022).
[31] Babaeiyazdi I, Rezaei-Zare A, Shokrzadeh S. State of charge prediction of EV Li-ion batteries using EIS: a machine learning approach[J]. Energy, 223, 120116(2021).
[32] Chemali E, Kollmeyer P J, Preindl M et al. Long short-term memory networks for accurate state-of-charge estimation of Li-ion batteries[J]. IEEE Transactions on Industrial Electronics, 65, 6730-6739(2018).
[33] Zou Y, Hu X S, Ma H M et al. Combined state of charge and state of health estimation over lithium-ion battery cell cycle lifespan for electric vehicles[J]. Journal of Power Sources, 273, 793-803(2015).
[34] He H W, Xiong R, Fan J X. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach[J]. Energies, 4, 582-598(2011).
[35] Li Y Z, Li Y B, Pei A L et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 358, 506-510(2017).
[36] Guo R, Lu L G, Ouyang M G et al. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries[J]. Scientific Reports, 6, 1-9(2016).
[37] Pieczonka N P W, Liu Z Y, Lu P et al. Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries[J]. The Journal of Physical Chemistry C, 117, 15947-15957(2013).
[38] Mehdi B L, Qian J, Nasybulin E et al. Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM[J]. Nano Letters, 15, 2168-2173(2015).
[39] Wenger M, Waller R, Lorentz V R H et al. Investigation of gas sensing in large lithium-ion battery systems for early fault detection and safety improvement[C], 5654-5659(2015).
[40] Berkes B B, Jozwiuk A, Sommer H et al. Simultaneous acquisition of differential electrochemical mass spectrometry and infrared spectroscopy data for in situ characterization of gas evolution reactions in lithium-ion batteries[J]. Electrochemistry Communications, 60, 64-69(2015).
[41] Cheng X M, Pecht M. In situ stress measurement techniques on Li-ion battery electrodes: a review[J]. Energies, 10, 591(2017).
[42] Rivera-Barrera J, Muñoz-Galeano N, Sarmiento-Maldonado H. SoC estimation for lithium-ion batteries: review and future challenges[J]. Electronics, 6, 102(2017).
[43] Tian H X, Qin P L, Li K et al. A review of the state of health for lithium-ion batteries: research status and suggestions[J]. Journal of Cleaner Production, 261, 120813(2020).
[44] Hodgkinson J, Tatam R P. Optical gas sensing: a review[J]. Measurement Science and Technology, 24, 012004(2013).
[45] Sahota J K, Gupta N, Dhawan D. Fiber Bragg grating sensors for monitoring of physical parameters: a comprehensive review[J]. Optical Engineering, 59, 060901(2020).
[46] Campanella C E, Cuccovillo A, Campanella C et al. Fibre Bragg grating based strain sensors: review of technology and applications[J]. Sensors, 18, 3115(2018).
[47] Liu S, Zeng Q, Li C C et al. Application of quasi-distributed high temperature sensor based on femtosecond fiber Bragg grating[J]. Laser & Optoelectronics Progress, 59, 0106007(2022).
[48] Yang G, Leitão C, Li Y H et al. Real-time temperature measurement with fiber Bragg sensors in lithium batteries for safety usage[J]. Measurement, 46, 3166-3172(2013).
[49] Novais S, Nascimento M, Grande L et al. Internal and external temperature monitoring of a Li-ion battery with fiber Bragg grating sensors[J]. Sensors, 16, 1394(2016).
[50] Nascimento M, Ferreira M S, Pinto J L. Real time thermal monitoring of lithium batteries with fiber sensors and thermocouples: a comparative study[J]. Measurement, 111, 260-263(2017).
[51] Liu Y B, Liu Z, Mei W X et al. Operando monitoring Lithium-ion battery temperature via implanting femtosecond-laser-inscribed optical fiber sensors[J]. Measurement, 203, 111961(2022).
[52] Zhao Y, Liao Y B. Discrimination methods and demodulation techniques for fiber Bragg grating sensors[J]. Optics and Lasers in Engineering, 41, 1-18(2004).
[53] Zhang L, Liu X, Li K et al. Real-time battery temperature monitoring using FBG sensors: a data-driven calibration method[J]. IEEE Sensors Journal, 22, 18639-18648(2022).
[54] Huang J W, Liu T. Review of research on optical fiber fluorescence temperature probes[J]. Laser & Optoelectronics Progress, 59, 1516023(2022).
[55] Li H Y, Wei F, Li Y Z et al. Optical fiber sensor based on upconversion nanoparticles for internal temperature monitoring of Li-ion batteries[J]. Journal of Materials Chemistry C, 9, 14757-14765(2021).
[56] Fujimoto S, Uemura S, Imanishi N et al. Oxygen concentration measurement in the porous cathode of a lithium-air battery using a fine optical fiber sensor[J]. Mechanical Engineering Letters, 5, 19-95(2019).
[57] Macchi E G, Tosi D, Braschi G et al. Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution[J]. Journal of Biomedical Optics, 19, 117004(2014).
[58] Thomas P J, Hellevang J O. A high response polyimide fiber optic sensor for distributed humidity measurements[J]. Sensors and Actuators B: Chemical, 270, 417-423(2018).
[59] Liu T, Li H, Ai F et al. Ultra-high resolution distributed strain sensing based on phase-OTDR[C](2019).
[60] Lu P, Lalam N, Badar M et al. Distributed optical fiber sensing: review and perspective[J]. Applied Physics Reviews, 6, 041302(2019).
[61] Vergori E, Yu Y F. Monitoring of Li-ion cells with distributed fibre optic sensors[J]. Procedia Structural Integrity, 24, 233-239(2019).
[62] Yu Y F, Vergori E, Worwood D et al. Distributed thermal monitoring of lithium ion batteries with optical fibre sensors[J]. Journal of Energy Storage, 39, 102560(2021).
[63] Yu Y F, Vincent T, Sansom J et al. Distributed internal thermal monitoring of lithium ion batteries with fibre sensors[J]. Journal of Energy Storage, 50, 104291(2022).
[64] Koerver R, Zhang W B, de Biasi L et al. Chemo-mechanical expansion of lithium electrode materials–on the route to mechanically optimized all-solid-state batteries[J]. Energy & Environmental Science, 11, 2142-2158(2018).
[65] Sommer L W, Kiesel P, Ganguli A et al. Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors[J]. Journal of Power Sources, 296, 46-52(2015).
[66] Bae C J, Manandhar A, Kiesel P et al. Monitoring the strain evolution of lithium-ion battery electrodes using an optical fiber Bragg grating sensor[J]. Energy Technology, 4, 851-855(2016).
[67] Li Y P, Zhang Y, Li Z et al. Operando decoding of surface strain in anode-free lithium metal batteries via optical fiber sensor[J]. Advanced Science, 9, 2203247(2022).
[68] Peng J, Zhou X, Jia S H et al. High precision strain monitoring for lithium ion batteries based on fiber Bragg grating sensors[J]. Journal of Power Sources, 433, 226692(2019).
[69] Flores R, Janeiro R, Viegas J. Optical fibre Fabry-Pérot interferometer based on inline microcavities for salinity and temperature sensing[J]. Scientific Reports, 9, 9556(2019).
[70] Zhu C, Huang J. A miniaturized optical fiber tip high-temperature sensor based on concave-shaped Fabry-Perot cavity[J]. Proceedings of SPIE, 10982, 1098236(2019).
[71] Peng M, Lu Z Q, Liu C N. Fiber optic sensor for simultaneous measurement of three parameters in FP cavity and MZI cascade[J]. Acta Optica Sinica, 43, 0106003(2023).
[72] Duan D W, Rao Y J, Hou Y S et al. Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement[J]. Applied Optics, 51, 1033-1036(2012).
[73] Sun B, Wang Y P, Qu J L et al. Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet[J]. Optics Express, 23, 1906-1911(2015).
[74] Nascimento M, Novais S, Ding M S et al. Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries[J]. Journal of Power Sources, 410/411, 1-9(2019).
[75] Leung A, Shankar P M, Mutharasan R. A review of fiber-optic biosensors[J]. Sensors and Actuators B: Chemical, 125, 688-703(2007).
[76] Feng D J, Zhang M S, Liu G X et al. D-shaped plastic optical fiber sensor for testing refractive index[J]. IEEE Sensors Journal, 14, 1673-1676(2014).
[77] Wu Y H, Deng X H, Li F et al. Less-mode optic fiber evanescent wave absorbing sensor: parameter design for high sensitivity liquid detection[J]. Sensors and Actuators B: Chemical, 122, 127-133(2007).
[78] Vijayan A, Fuke M, Hawaldar R et al. Optical fibre based humidity sensor using co-polyaniline clad[J]. Sensors and Actuators B: Chemical, 129, 106-112(2008).
[79] Batumalay M, Harith Z, Rafaie H A et al. Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity[J]. Sensors and Actuators A: Physical, 210, 190-196(2014).
[80] Ghannoum A, Norris R C, Iyer K et al. Optical characterization of commercial lithiated graphite battery electrodes and in situ fiber optic evanescent wave spectroscopy[J]. ACS Applied Materials & Interfaces, 8, 18763-18769(2016).
[81] Ghannoum A, Iyer K, Nieva P et al. Fiber optic monitoring of lithium-ion batteries: a novel tool to understand the lithiation of batteries[C](2017).
[82] Ghannoum A, Nieva P, Yu A P et al. Development of embedded fiber-optic evanescent wave sensors for optical characterization of graphite anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 9, 41284-41290(2017).
[83] Ghannoum A, Nieva P. Graphite lithiation and capacity fade monitoring of lithium ion batteries using optical fibers[J]. Journal of Energy Storage, 28, 101233(2020).
[84] Lao J J, Sun P, Liu F et al. In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage[J]. Light: Science & Applications, 7, 1-11(2018).
[85] Qian S Y, Chen X L, Jiang S Y et al. Direct detection of charge and discharge process in supercapacitor by fiber-optic LSPR sensors[J]. Nanophotonics, 9, 1071-1079(2020).
[86] Cao-Paz A M, Marcos-Acevedo J, del Río-Vázquez A et al. A multi-point sensor based on optical fiber for the measurement of electrolyte density in lead-acid batteries[J]. Sensors, 10, 2587-2608(2010).
[87] Nedjalkov A, Meyer J, Gräfenstein A et al. Refractive index measurement of lithium ion battery electrolyte with etched surface cladding waveguide Bragg gratings and cell electrode state monitoring by optical strain sensors[J]. Batteries, 5, 30(2019).
[88] Tanaka N, Bessler W G. Numerical investigation of kinetic mechanism for runaway thermo-electrochemistry in lithium-ion cells[J]. Solid State Ionics, 262, 70-73(2014).
[89] Lochbaum A, Kiesel P, Wilko L et al. Embedded fiber optic chemical sensing for internal cell side-reaction monitoring in advanced battery management systems[J]. MRS Online Proceedings Library, 1681, 8-13(2014).
[90] Li Z S, Wang S C, Bin W et al. Design of in situ monitor system for lithium-ion battery based on multifunctional fiber[J]. Proceedings of SPIE, 10846, 108460N(2018).