• Matter and Radiation at Extremes
  • Vol. 4, Issue 2, 24201 (2019)
O. Renner1、* and F. B. Rosmej2、3
Author Affiliations
  • 1Institute of Physics and ELI-Beamlines Project, Academy of Sciences of the Czech Republic, Na Slovance 2, 18221 Prague, Czech Republic
  • 2Sorbonne University, Faculty of Science and Engineering, UMR7605, Case 128, 4 Place Jussieu, F-75252 Paris Cedex 05, France
  • 3LULI, Ecole Polytechnique, CEA, CNRS, Physique Atomique dans les Plasmas Denses PAPD, Route de Saclay, F-91128 Palaiseau, France
  • show less
    DOI: 10.1063/1.5086344 Cite this Article
    O. Renner, F. B. Rosmej. Challenges of x-ray spectroscopy in investigations of matter under extreme conditions[J]. Matter and Radiation at Extremes, 2019, 4(2): 24201 Copy Citation Text show less
    References

    [1] R. W. P. McWhirter, R. H. Huddelstone, S. L. Leonard. Spectral intensities. Plasma Diagnostic Techniques(1965).

    [2] H. R. Griem. Plasma Spectroscopy(1964).

    [3] H. R. Griem. Spectral Line Broadening by Plasmas(1974).

    [4] H. R. Griem. Principles of Plasma Spectroscopy(1997).

    [5] C. de Michelis, M. Mattioli. Soft-x-ray spectroscopic diagnostics of laboratory plasmas. Nucl. Fusion, 21, 677(1981).

    [6] S. A. Pikuz, V. A. Boiko, A. V. Vinogradov, I. Yu Skobelev, A. Ya. Faenov. X-ray spectroscopy of laser produced plasma. J. Sov. Laser Res., 6, 82(1985).

    [7] T. Fujimoto. Plasma Spectroscopy(2004).

    [8] H.-J. Kunze. Introduction to Plasma Spectroscopy(2009).

    [9] R. W. Lee, W. L. Morgan, M. Chen, H.-K. Chung, Y. Ralchenko. FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Energy Density Phys., 1, 3(2005).

    [10] I. E. Golovkin, N. A. Pereyra, P. Wang, J. J. MacFarlane, P. R. Woodruff. SPECT3D—A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output. High Energy Density Phys., 3, 181(2007).

    [11] D. Salzmann. Atomic Physics in Hot Plasmas(1988).

    [12] V. S. Lisitsa. Atoms in Plasmas(1994).

    [13] L. A. Vainshtein, I. I. Sobelman, E. A. Yukov. Excitation of Atoms and Broadening of Spectral Lines(1995).

    [14] L. A. Bureyeva, V. S. Lisitsa. A perturbed atom. Astrophys. Space Phys. Rev., 11, 455(2000).

    [15] V. A. Astapenko, F. B. Rosmej, V. S. Lisitsa. Plasma Atomic Physics(2018).

    [16] S. Varró, F. B. Rosmej. Exotic states of high density matter driven by intense XUV/x-ray free electron lasers. Free Electron Laser(2012).

    [17] F. B. Rosmej, M. Dozières, B. Deschaud, R. Dachicourt, D. Khaghani et al. Exotic x-ray emission from dense plasmas. J. Phys. B: Rev. Spec. Top., 48, 224005(2015).

    [18] F. B. Rosmej. Hot electron x-ray diagnostics. J. Phys. B. Lett.: At., Mol. Opt. Phys., 30, L819(1997).

    [19] F. B. Rosmej, Y. Zou, R. Hutton. X-ray emission spectroscopy and diagnostics of non-equilibrium fusion and laser produced plasmas. Highly Charged Ion Spectroscopic Research(2012).

    [20] C. A. Back, F. B. Rosmej, R. W. Lee, K. G. Estabrook, S. H. Glenzer et al. Measurements of suprathermal electrons in hohlraum plasmas with x-ray spectroscopy. Phys. Rev. Lett., 81, 365(1998).

    [21] J. Abdallah, E. Wagenaars, A. Ya. Faenov, S. A. Pikuz, J. Colgan et al. Exotic dense-matter states pumped by a relativistic laser plasma in the radiation-dominated regime. Phys. Rev. Lett., 110, 125001(2013).

    [22] M. Lobet, B. Borm, F. Gärtner, D. Khaghani, L. Burr et al. Enhancing laser-driven proton acceleration by using micro-pillar arrays at high drive energy. Sci. Rep., 7, 11366(2017).

    [23] A. C. Thompson. X-Ray Data Booklet(2009).

    [24] I. Martinson, Z. Shi, R. Hutton, R. Zou, R. Hutton. Spectroscopic instruments. Handbook for Highly Charged Ion Spectroscopic Research(2012).

    [25] G. Gilmore. Practical Gamma-Ray Spectrometry(2008).

    [26] H. Cole, B. W. Batterman. Dynamical diffraction of x rays by perfect crystals. Rev. Mod. Phys., 36, 681(1964).

    [27] D. Taupin. Theorie dynamique de la diffraction des rayons x par les cristaux deformes. Bull. Soc. Fr. Mineral. Crystallogr., 87, 469(1964).

    [28] E. Förster, G. Hölzer, O. Wehrhan. Characterization of flat and bent crystals for x-ray spectroscopy and imaging. Cryst. Res. Technol., 33, 555(1998).

    [29] O. Renner, M. Kopecký, T. Missalla, E. Förster, E. Krouský, J. S. Wark. New methods of x-ray spectroscopy of laser-produced plasma with 1-D spatial resolution. Laser Part. Beams, 12, 539(1994).

    [30] P. K. Patel, P. E. Young, O. Renner, E. Krousky, J. S. Wark, E. W. Lee. Vertical variant of a double channel-cut crystal spectrometer for investigation of laser-generated plasma. Rev. Sci. Instrum., 70, 3025(1999).

    [31] G. Jenke, I. Uschmann, E. Förster, T. Missalla, D. von der Linde. Monochromatic focusing of subpicosecond x-ray pulses in the keV range. Rev. Sci. Instrum., 70, 1288(1999).

    [32] H. H. Johann, T. Johansson. Über ein neuartiges, genau fokussierendes röntgenspektrometer. ibid, 82, 507(1933).

    [33] E. Krouský, P. Sondhauss, O. Renner, R. Ramis, O. Peyrusse et al. High-resolution measurements of x-ray emission from dense quasi-1D plasma: Line merging and profile modification. Laser Part. Beams, 17, 365(1999).

    [34] O. Renner, S. G. Podorov, O. Wehrhan, E. Förster. Optimized polychromatic x-ray imaging with asymmetrically bent crystals. J. Phys. D: Appl. Phys., 34, 2363(2001).

    [35] N. Canestrari, M. Sanchez del Rio, O. Chubar. Improved models for synchrotron radiation sources in SHADOW. J. Phys.: Conf. Ser., 425, 162007(2013).

    [36] Y. Zou, N. Nakamura, R. Hutton. Crystal spectrometers. Highly Charged Ion Spectroscopic Research(2012).

    [37] H. He, E. Förster, O. Renner, M. Kopecký, J. S. Wark. Vertical dispersion mode double-crystal spectrometer for advanced spectroscopy of LPP. Rev. Sci. Instrum., 66, 3234(1995).

    [38] J. S. Wark, S. J. Rose, H. He, A. Djaoui, O. Renner et al. The effect of velocity gradients on x-ray line transfer in laser-produced plasmas. Phys. Rev. Lett., 72, 1826(1994).

    [39] S. Rose, J. S. Wark, D. J. Heading, P. K. Patel, A. Djaoui et al. Simulation of x-ray line transfer in a cylindrically expanding plasma. J. Quant. Spectrosc. Radiat. Transfer, 57, 683(1997).

    [40] L. von Hamos. Röntgenspektroskopie und abbildung mittels gekrümmter kristallreflektoren. Z. Kristallogr., 101, 17(1939).

    [41] B. Yaakobi, R. E. Turner, P. O. Taylor, H. W. Schnopper. Focusing x-ray spectrograph for laser fusion experiments. Rev. Sci. Instrum., 50, 1609(1979).

    [42] M. Neitzel, C. Schlesiger, L. Anklamm, D. Grötzsch, W. Malzer et al. A novel von Hamos spectrometer for efficient x-ray emission spectroscopy in the laboratory. Rev. Sci. Instrum., 85, 053110(2014).

    [43] O. Safronova, M. Willimann, E. de Boni, J. Szlachetko, M. Nachtegaal et al. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies. Rev. Sci. Instrum., 83, 103105(2012).

    [44] T. A. Hall. A focusing x-ray crystal spectrograph. J. Phys. E: Sci. Instrum., 17, 110(1984).

    [45] J. M. Boudenne, E. Martinolli, D. Batani, E. Perelli, M. Koenig, T. A. Hall. Conical crystal spectrograph for high brightness x-ray Kα spectroscopy in subpicosecond laser–solid interaction. Rev. Sci. Instrum., 75, 2024(2004).

    [46] L. Delgado-Apariccio, K. W. Hill, L. Gao, P. C. Efthimion, M. Bitter et al. A multi-cone x-ray imaging Bragg crystal spectrometer. Rev. Sci. Instrum., 87, 11E333(2016).

    [47] O. Renner, E. Förster, T. Missalla, E. Krouský, P. Sondhauss et al. High luminosity, high resolution x-ray spectroscopy of laser produced plasma by vertical geometry Johann spectrometer. Rev. Sci. Instrum., 68, 2393(1997).

    [48] M. May, J. Emig, R. Heeter. Convex crystal x-ray spectrometer for laser plasma experiments. Rev. Sci. Instrum., 75, 3740(2004).

    [49] R. Y. Li, W. Z. Chang, D. B. Wittry. X-ray optics of diffractors curved to a logarithmic spiral. J. Appl. Phys., 74, 3534(1993).

    [50] B. L. Henke, P. A. Jaanimagi. Two-channel, elliptical analyzer spectrograph for absolute, time-resolving time-integrating spectrometry of pulsed x-ray source in the 100-10000-eV region. Rev. Sci. Instrum., 56, 1537(1985).

    [51] Z. M. Koenig, A. Hauer, N. D. Delamater. High resolution x-ray spectroscopic diagnostics of laser-heated and ICF plasmas. Laser Part. Beams, 9, 3(1991).

    [52] Y. Cauchois. Spectrographie des rayons x par transmission d’un faisceau non canalise a travers un cristal courbe. J. Phys. Radium, 3, 320(1932).

    [53] L. T. Hudson, J. F. Seely, G. E. Holland, A. Henins. Enhanced x-ray resolving power achieved behind the focal circles of Cauchois spectrometers. Appl. Opt., 47, 2767(2008).

    [54] A. Henins, G. E. Holland, C. I. Szabo, L. T. Hudson, J. Seely et al. K-shell spectra from Ag, Sn, Sm, Ta, and Au generated by intense femtosecond laser pulses. High Energy Density Phys., 3, 263(2007).

    [55] S. A. Pikuz, A. Ya. Faenov, V. M. Dyakin, B. A. Bryunetkin, A. I. Erko et al. High-performance x-ray spectroscopic devices for plasma microsources investigations. Phys. Scr., 50, 333(1994).

    [56] Y. Maheut, L. Antonelli, G. Folpini, L. Giuffrida, D. Batani et al. Generation of high pressure shocks relevant to the shock-ignition intensity regime. Phys. Plasmas, 21, 032710(2014).

    [57] K. Jungwirth, L. Juha, J. Krása, B. Králiková, A. Cejnarová et al. The Prague asterix laser system PALS. Phys. Plasmas, 8, 2495(2001).

    [58] N. N. Demchenko, S. Yu. Gus’kov, O. Renner, Z. Kalinowska, T. Pisarczyk et al. Pre-plasma effect on laser beam energy transfer to a dense target under conditions relevant to shock ignition. Laser Part. Beams, 33, 221(2015).

    [59] K. W. D. Ledingham, P. McKenna, R. P. Singhal. Applications for nuclear phenomena generated by ultra-intense lasers. Science, 300, 1107(2003).

    [60] M. W. Tate, E. F. Eikenberry, S. M. Gruner, M. G. Rossmann, E. Arnold. Comparison of x-ray detectors. International Tables for Crystallography Volume F: Crystallography of Biological Macromolecules. International Tables for Crystallography(2006).

    [61] D. M. Chambers, C. D. Gregory, I. M. Hall, C. Courtois, J. Howe et al. Comparison of film detectors, charged-coupled devices, and imaging plates in x-ray spectroscopy of hot dense plasma. Rev. Sci. Instrum., 77, 036105(2006).

    [62] M. J. Yaffe, J. A. Rowlands. X-ray detectors for digital radiography. Phys. Med. Biol., 42, 1(1997).

    [63] L. Fabris, L. Ratti, D. Comotti, M. Grassi, L. Lodola et al. A pixelated x-ray detector for diffraction imaging at next-generation high-rate FEL sources. Proc. SPIE, 10392, 103920D(2017).

    [64] F. N. Chukhovskii, E. Forster. Time-dependent x-ray Bragg-diffraction. Acta Crystallogr., Sect. A: Found. Crystallogr., 51, 668(1995).

    [65] F. B. Rosmej. Ionization potential depression in an atomic-solid-plasma picture. Lett. J. Phys. B, 51, 09LT01(2018).

    [66] W. L. Kruer. The Physics of Laser Plasma Interactions(1988).

    [67] J. Lindl, O. Landen, J. Edwards, E. Moses et al. Review of the national ignition campaign 2009-2012. Phys. Plasmas, 21, 020501(2014).

    [68] K. A. Tanaka, P. Norreys, V. T. Tikhonchuk, M. Tabak. Alternative ignition schemes in inertial confinement fusion. Nucl. Fusion, 54, 054001(2014).

    [69] M. E. Glinsky, S. C. Wilks, W. L. Kruer, J. Hammer, M. Tabak et al. Phys. Plasmas, 1, 1626(1994).

    [70] R. Betti, W. Theobald, K. S. Anderson, C. D. Zhou, L. J. Perkins et al. Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett., 98, 155001(2007).

    [71] W. Theobald, F. J. Marshall, R. Betti, D. T. Michel, R. Nora et al. Gigabar spherical shock generation on the OMEGA laser. Phys. Rev. Lett., 114, 045001(2015).

    [72] E. Lior Aisa, V. T. Tikhonchuk, T. Nguyen-Bui, X. Ribeyre, G. Duchateau et al. The role of hot electrons in the dynamics of a laser-driven strong converging shock. Phys. Plasmas, 24, 112711(2017).

    [73] M. Lafon, R. Nora, W. Theobald, W. Seka, K. S. Anderson et al. Spherical strong-shock generation for shock-ignition inertial fusion. Phys. Plasmas, 22, 056310(2015).

    [74] T. Robert, E. Galtier, O. Renner, F. Khattak, A. Moinard et al. High resolution x-ray imaging of K-alpha radiation induced by high intensity laser pulse interaction with a copper target. J. Phys. B: At., Mol. Opt. Phys., 45, 205701(2012).

    [75] P. Adámek, E. Dalimier, O. Renner, A. Delserieys, F. B. Rosmej et al. Spectroscopic characterization of ion collisions and trapping at laser irradiated double-foil targets. High Energy Density Phys., 3, 211(2007).

    [76] R. Schott, V. S. Lisitsa, F. B. Rosmej, D. Riley, E. Dalimier et al. Charge exchange driven x-ray emission from highly ionized plasma jets. Europhys. Lett., 76, 815(2006).

    [77] F. B. Rosmej, V. S. Lisitsa. A self-consistent method for the determination of neutral density from x-ray impurity spectra. Phys. Lett. A, 244, 401(1998).

    [78] D. Reiter, O. Herzog, M. Bitter, V. S. Lisitsa, F. B. Rosmej et al. Influence of charge exchange processes on x-ray spectra in tokamak plasmas: Experimental and theoretical investigation. Plasma Phys. Controlled Fusion, 41, 191(1999).

    [79] R. Stamm, V. S. Lisitsa, F. B. Rosmej. Convergent coupling of helium to the H/D background in magnetically confined plasmas. Europhys. Lett., 73, 342(2006).

    [80] V. A. Astapenko, F. B. Rosmej, V. S. Lisitsa. Plasma Atomic Physics(2019).

    [81] F. B. Rosmej, O. Renner, R. Liska. Laser–produced plasma–wall interaction. Laser Part. Beams, 27, 725(2009).

    [82] Yu. P. Raizer, Ya. B. Zel’dovich. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, 762-770(2002).

    [83] J. Burgdörfer, P. Lerner, F. W. Meyer. Above-surface neutralization of highly charged ions: The classical over-the-barrier model. Phys. Rev. A, 44, 5674(1991).

    [84] F. Aumayr, H. Winter. Hollow atoms. J. Phys. B: At., Mol. Opt. Phys., 32, R39(1999).

    [85] E. Oks, R. Schott, E. Dalimier, O. Renner. Experimental determination of rate coefficients of charge exchange from x-dips in laser-produced plasmas. J. Phys. B: At., Mol. Opt. Phys., 40, 909(2007).

    [86] Z. Kalinowska, E. Krouský, T. Pisarczyk, O. Renner, T. Chodukowski et al. Plasma-wall interaction studies with optimized laser-produced jets. Phys. Plasmas, 18, 093503(2011).

    [87] O. Renner, E. Oks, E. Dalimier, M. Šmíd, R. Liska. Charge exchange signatures in x-ray line emission accompanying plasma-wall interaction. J. Phys.: Conf. Ser., 397, 012017(2012).

    [88] I. Yu. Skobelev, A. Ya. Faenov, T. A. Pikuz, A. E. Stepanov, F. B. Rosmej et al. Dominant role of dielectronic satellites in the radiation spectra of a laser plasma near the target surface. J. Exp. Theor. Phys. Lett., 65, 708(1997).

    [89] A. Ya. Faenov, F. B. Rosmej, F. Flora, T. A. Pikuz, P. Di Lazzaro et al. Innershell satellite transitions in dense short pulse plasmas. J. Quant. Spectrosc. Radiat. Transfer, 58, 859(1997).

    [90] F. B. Rosmej, P. Di Lazzaro, T. A. Pikuz, F. Flora, A. Ya. Faenov et al. Line formation of high intensity Heβ-Rydberg dielectronic satellites 1s3lnl' in laser produced plasmas. J. Phys. B: At., Mol. Opt. Phys., 31, L921(1998).

    [91] F. B. Rosmej, E. Krouský, I. Uschmann, P. Sondhauss, O. Renner et al. Overcritical density plasma diagnosis inside laser-produced craters. Appl. Phys. Lett, 79, 177(2001).

    [92] L. A. Woltz, R. C. Mancini, V. L. Jacobs, C. F. Hooper. Effects of electric microfields on argon dielectronic satellite spectra in laser-produced plasmas. Phys. Rev. A, 44, 1281(1991).

    [93] J. Cooper, D. E. Kelleher. Shifts of ion lines in plasmas. Spectral Line Shapes, 85(1985).

    [94] P. Malnoult, H. Nguyen, M. Koenig. Atomic structure and line broadening of He-like ions in hot and dense plasmas. Phys. Rev. A, 38, 2089(1988).

    [95] P. Sondhauss, A. Djaoui, O. Renner, D. Salzmann, M. Koenig et al. Measurement of the polarization shifts in hot and dense aluminum plasma. J. Quant. Spectrosc. Radiat. Transfer, 58, 851(1997).

    [96] A. Saemann, E. Andersson, K. Eidmann, I. E. Golovkin, R. C. Mancini et al. Isochoric heating of solid aluminum by ultrashort laser pulses focused on a tamped target. Phys. Rev. Lett., 82, 4843(1999).

    [97] N. C. Woolsey, A. Calisti, C. Mosse, C. A. Back, R. W. Lee et al. Experimental results on line shifts from dense plasmas. J. Quant. Spectrosc. Radiat. Transfer, 65, 573(2000).

    [98] P. Angelo, O. Renner, E. Dalimier, E. Förster, P. Adámek et al. Spectral line decomposition and frequency shifts in Al Heα group emission from laser produced plasmas. J. Quant. Spectrosc. Radiat. Transfer, 99, 523(2006).

    [99] Z. Xu, X. Li, F. B. Rosmej. Exchange energy shifts under dense plasma conditions. J. Phys. B: At., Mol. Opt. Phys., 39, 3373(2006).

    [100] B. Loupias, S. Baton, K. Glize, V. Dervieux, L. Lecherbourg et al. Characterization of near-LTE, high-temperature and high-density aluminum plasmas produced by ultra-high intensity lasers. High Energy Density Phys., 16, 12(2015).

    [101] C. R. Stillman, I. E. Golovkin, P. M. Nilson, C. Mileham, S. T. Ivancic et al. Picosecond time-resolved measurements of dense plasma line shifts. Phys. Rev. E, 95, 063204(2017).

    [102] J. F. Wyart, F. B. Rosmej, P. Adámek, L. Drska, O. Renner. Genetic algorithms in spectroscopic diagnostics of hot dense plasmas. Laser Part. Beams, 24, 511(2006).

    [103] E. Krouský, P. Sondhauss, M. P. Kalachnikov, F. B. Rosmej, O. Renner et al. Overcritical density plasma diagnosis inside the laser-produced craters. Appl. Phys. Lett., 79, 177(2001).

    [104] E. Oks. Plasma Spectroscopy: The Influence of Microwave and Laser Fields(1995).

    [105] O. Peyrusse. Stark-profile calculations for spectral lines of hydrogenic ions in plasmas submitted to a strong oscillating electric field. Phys. Scr., 56, 371(1997).

    [106] P. Sauvan, E. Dalimier, O. Renner, C. Riconda, F. B. Rosmej et al. Signature of externally introduced laser fields in x-ray emission of multicharged ions. High Energy Density Phys., 5, 139(2009).

    [107] K. Tsigutkin, E. Stambulchik, Y. Maron. Spectroscopic method for measuring plasma magnetic fields having arbitrary distributions of direction and amplitude. Phys. Rev. Lett., 98, 225001(2007).

    [108] L. Mouret, C. Mossé, S. Ferri, B. Talin, A. Calisti et al. Frequency-fluctuation model applied to Stark-Zeeman spectral line shapes in plasmas. Phys. Rev. E, 84, 026407(2011).

    [109] Y. Maron, E. Stambulchik. Zeeman effect induced by intense laser light. Phys. Rev. Lett., 113, 083002(2014).

    [110] D. H. H. Hoffmann, F. B. Rosmej, M. Geißel, A. Tauschwitz, U. N. Funk et al. X-ray radiation from ions with K-shell vacancies. J. Quant. Spectrosc. Radiat. Transfer, 65, 477(2000).

    [111] S. X. Hu. Continuum lowering and Fermi surface-rising in strongly coupled and degenerate plasmas. Phys. Rev. Lett., 119, 065001(2017).

    [112] D. Khaghani, F. Gärtner, B. Borm, M. Lobet, L. Burr et al. Enhancing laser-driven proton acceleration by using micro-pillar arrays at high drive energy. Sci. Rep., 7, 11366(2017).

    [113] X. Ribeyre, G. Cuchateau, Y. Maheut, G. Boutoux, A. Colaïtis et al. Coupled hydrodynamic model for laser-plasma interaction and hot electron generation. Phys. Rev. E, 92, 041101(R)(2015).

    [114] M. Šmíd, T. Schlegel, F. B. Rosmej, A. Colaitis, O. Renner, V. T. Tikhonchuk. Characterization of suprathermal electrons inside a laser accelerated near solid density matter via highly-resolved Kα emission. Nat. Commun..

    [115] D. Riley, F. B. Rosmej, E. Galtier, T. Dzelzainis, F. Y. Khattak et al. Decay of cystalline order and equilibration during the solid-to-plasma transition induced by 20-fs microfocused 92-ev free-electron-laser pulses. Phys. Rev. Lett., 106, 164801(2011).

    [116] F. B. Rosmej, B. Deschaud, O. Peyrusse. Generalized atomic processes for interaction of intense femtosecond XUV- and x-ray radiation with solids. Europhys. Lett., 108, 53001(2014).

    [117] F. B. Rosmej, O. Peyrusse, B. Deschaud. Atomic kinetics for isochoric heating of solid aluminum under short intense XUV free electron laser irradiation. High Energy Density Phys., 15, 22(2015).

    [118] F. B. Rosmej, M. Farjado, D. Riley, J. Wark, R. W. Lee et al. K-shell x-ray spectroscopy of FEL irradiated solids, beam time proposal at FLASH(2008).

    [119] F. Petitdemange, F. B. Rosmej, M. Mohan. Dielectronic satellites and auger electron heating: Irradiation of solids by intense XUV-free electron laser radiation. New Trends in Atomic and Molecular Physics: Advanced Technological Applications, 91-114(2013).

    [120] F. B. Rosmej, R. W. Lee. Hollow ion emission driven by pulsed intense x-ray fields. Europhys. Lett., 77, 24001(2007).

    [121] D. H. G. Schneider, F. B. Rosmej, R. W. Lee. Fast x-ray emission switches driven by intense x-ray free electron laser radiation. High Energy Density Phys., 3, 218(2007).

    [122] F. B. Rosmej. A new type of analytical model for complex radiation emission of hollow ions in fusion, laser and heavy-ion-beam-produced plasmas. Europhys. Lett., 55, 472(2001).

    [123] F. B. Rosmej. An alternative method to determine atomic radiative emission. Europhys. Lett., 76, 1081(2006).

    [124] B. Barbrel, T. R. Preston, O. Ciricosta, D. S. Rackstraw, S. M. Vinko et al. Measurements of continuum lowering in solid-density plasmas created from elements and compounds. Nat. Commun., 7, 11713(2016).

    [125] J. Stewart, K. Pyatt K. Lowering of ionization potentials in plasmas. Astrophys. J., 144, 1203(1996).

    [126] H.-K. Chung, B. I. Cho, C. R. D. Brown, S. M. Vinko, O. Ciricosta et al. Direct measurements of the ionization potential depression in a dense plasma. Phys. Rev. Lett., 109, 065002(2012).

    [127] W. Kröll, G. Ecker. Lowering of the ionization energy for a plasma in thermodynamic equilibrium. Phys. Fluids, 6, 62(1963).

    O. Renner, F. B. Rosmej. Challenges of x-ray spectroscopy in investigations of matter under extreme conditions[J]. Matter and Radiation at Extremes, 2019, 4(2): 24201
    Download Citation