• Laser & Optoelectronics Progress
  • Vol. 55, Issue 12, 120003 (2018)
Tingting Liu1, Qiang Hao1、*, and Heping Zeng1、2
Author Affiliations
  • 1 School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • show less
    DOI: 10.3788/LOP55.120003 Cite this Article Set citation alerts
    Tingting Liu, Qiang Hao, Heping Zeng. All Polarization-Maintaining Fiber-Based Frequency Combs[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120003 Copy Citation Text show less
    References

    [1] Eckstein J N, Ferguson A I, Hänsch T W. High-resolution two-photon spectroscopy with picosecond light pulses[J]. Physical Review Letters, 40, 847-850(1978). http://adsabs.harvard.edu/abs/1978PhRvL..40..847E

    [2] Jones D J, Dissams S A, Ranka J K et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 288, 635-639(2000). http://www.tandfonline.com/servlet/linkout?suffix=CIT0133&dbid=8&doi=10.1080%2F09500340.2018.1441917&key=10784441

    [3] Wei Z Y. The 2005 Nobel prize in physics and optical frequency comb techniques[J]. Physics., 35, 213-217(2006).

    [4] Kienberger R, Hentschel M, Uiberacker M et al. Steering attosecond electron wave packets with light[J]. Science, 297, 1144-1148(2002). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000001000004000103000001&idtype=cvips&gifs=Yes

    [5] Minoshima K, Matsumoto H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser[J]. Applied Optics, 39, 5512-5517(2000). http://www.opticsinfobase.org/abstract.cfm?URI=ao-39-30-5512

    [6] Bloom B J, Nicholson T L, Williams J R et al. An optical lattice clock with accuracy and stability at the 10 -18 level [J]. Nature, 506, 71-75(2014). http://www.nature.com/nature/journal/v506/n7486/abs/nature12941.html

    [7] Wu H Z, Zhang F M, Meng F et al. Absolute distance measurement using frequency comb and a single-frequency laser[J]. IEEE Photonics Technology Letters, 27, 2587-2590(2015). http://ieeexplore.ieee.org/document/7274326/

    [8] Jung K, Shin J, Kim J. Ultralow phase noise microwave generation from mode-locked Er-fiber lasers with subfemtosecond integrated timing jitter[J]. IEEE Photonics Journal, 5, 5500906(2013). http://ieeexplore.ieee.org/document/6527987

    [9] Braje D A, Kirchner M S, Osterman S et al. Astronomical spectrograph calibration with broad-spectrum frequency combs[J]. The European Physical Journal D, 48, 57-66(2008). http://link.springer.com/article/10.1140/epjd/e2008-00099-9

    [10] Giorgetta F R, Swann W C, Sinclair L C et al. Optical two-way time and frequency transfer over free space[J]. Nature Photonics, 7, 434-438(2013). http://www.nature.com/nphoton/journal/v7/n6/abs/nphoton.2013.69.html

    [11] Diddams S A. The evolving optical frequency comb[J]. Journal of the Optical Society of America B, 27, B51-B62(2010).

    [12] Washburn B R, Diddams S A, Newbury N R et al. Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared[J]. Optics Letters, 29, 250-252(2004). http://www.ncbi.nlm.nih.gov/pubmed/14759041

    [13] Yang K W, Li W X, Yan M et al. High-power ultra-broadband frequency comb from ultraviolet to infrared by high-power fiber amplifiers[J]. Optics Express, 20, 12899-12905(2012). http://www.ncbi.nlm.nih.gov/pubmed/22714317

    [14] Creeden D, Johnson B R, Setzler S D et al. Resonantly pumped Tm-doped fiber laser with >90% slope efficiency[J]. Optics Letters, 39, 470-473(2014).

    [15] Geng J H, Wang Q, Luo T et al. Single-frequency gain-switched Ho-doped fiber laser[J]. Optics Letters, 37, 3795-3797(2012). http://europepmc.org/abstract/MED/23041862

    [16] Leconte B, Cadier B, Gilles H et al. Extended tunability of Nd-doped fiber lasers operating at 872-936 nm[J]. Optics Letters, 40, 4098-4101(2015). http://www.ncbi.nlm.nih.gov/pubmed/26368721

    [17] Ruehl A, Marcinkevicius A, Fermann M E et al. 80 W, 120 fs Yb-fiber frequency comb[J]. Optics Letters, 35, 3015-3017(2010). http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-18-3015

    [18] Sinclair L C, Deschênes J D, Sonderhouse L et al. Invited Article: A compact optically coherent fiber frequency comb[J]. The Review of Scientific Instruments, 86, 081301(2015). http://www.ncbi.nlm.nih.gov/pubmed/26329167

    [19] Shen D Y, Sahu J K, Clarkson W A. High-power widely tunable Tm: fibre lasers pumped by an Er, Yb co-doped fibre laser at 1.6 μm[J]. Optics Express, 14, 6084-6090(2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6084

    [20] Liu X M, Lagsgaard J, Turchinovich D. Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 18, 1439-1450(2012). http://ieeexplore.ieee.org/document/6125968/

    [21] Zhang L, Zhou J Q, Wang Z K et al. SESAM mode-locked, environmentally stable, and compact dissipative soliton fiber laser[J]. IEEE Photonics Technology Letters, 26, 1314-1316(2014). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6808485

    [22] Zou F, Wang Z K, Wang Z W et al. Widely tunable all-fiber SESAM mode-locked Ytterbium laser with a linear cavity[J]. Optics & Laser Technology, 92, 133-137(2017). http://www.sciencedirect.com/science/article/pii/S0030399216310441

    [23] Szczepanek J. Karda s' T M, Michalska M, et al. Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror [J]. Optics Letters, 40, 3500-3503(2015).

    [24] Luo J, Yang S, Hao Q et al. Precise locking the repetition rate of a SESAM mode-locking all polarization maintaining fiber laser[J]. Acta Optica Sinica, 37, 0206003(2017).

    [25] Jiang T X, Cui Y F, Lu P et al. All PM fiber laser mode locked with a compact phase biased amplifier loop mirror[J]. IEEE Photonics Technology Letters, 28, 1786-1789(2016). http://ieeexplore.ieee.org/document/7478043/

    [26] Hänsel W, Hoogland H, Giunta M et al. All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation[J]. Applied Physics B, 123, 41(2017). http://link.springer.com/10.1007/s00340-016-6598-2

    [27] Liu G Y, Ou S M, Chen K L et al. Mode-locked oscillator-amplifier femtosecond pulse laser with bias phase shift nonlinear loop mirror[J]. Chinese Journal of Lasers, 44, 0501011(2017).

    [28] Chen F H, Hao Q, Zeng H P. Optimization of an NALM mode-locked all-PM Er: fiber laser system[J]. IEEE Photonics Technology Letters, 29, 2119-2122(2017). http://ieeexplore.ieee.org/document/8080212/

    [29] Wang Y Z, Zhang L Q, Zhuo Z et al. Cross-splicing method for compensating fiber birefringence in polarization-maintaining fiber ring laser mode locked by nonlinear polarization evolution[J]. Applied Optics, 55, 5766-5770(2016). http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-55-21-5766

    [30] Szczepanek J. Karda s' T M, Radzewicz C, et al. Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers [J]. Optics Letters, 42, 575-578(2017).

    [31] Sinclair L C, Coddington I, Swann W C et al. Operation of an optically coherent frequency comb outside the metrology lab[J]. Optics Express, 22, 6996-7006(2014). http://europepmc.org/abstract/MED/24664048

    [32] Lee J, Lee K, Jang Y S et al. Testing of a femtosecond pulse laser in outer space[J]. Scientific Reports, 4, 5134(2014). http://www.nature.com/doifinder/10.1038/srep05134

    [33] Lezius M, Wilken T, Deutsch C et al. Space-borne frequency comb metrology[J]. Optica, 3, 1381-1387(2016). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-3-12-1381

    [34] Kuse N, Jiang J, Lee C C et al. All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror[J]. Optics Express, 24, 3095-3102(2016). http://www.ncbi.nlm.nih.gov/pubmed/26906874

    [35] Li Y H, Kuse N Y, Rolland A et al. Low noise, self-referenced all polarization maintaining ytterbium fiber laser frequency comb[J]. Optics Express, 25, 18017-18023(2017). http://www.ncbi.nlm.nih.gov/pubmed/28789289

    [36] Wei Z Y[M]. Advances in ultrafast optics(2014).

    [37] Baumgartl M, Ortaç B, Limpert J et al. Impact of dispersion on pulse dynamics in chirped-pulse fiber lasers[J]. Applied Physics B, 107, 263-274(2012). http://link.springer.com/article/10.1007/s00340-012-5010-0

    [38] Li Y. Precise control of ultrashort pulse laser in the time and frequency domains[D]. Shanghai: East China Normal University(2010).

    [39] Agrawal G P[M]. Nonlinear fiber optics, 195-211(1995).

    [40] Keller U, Weingarten K J, Kärtner F X et al. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2, 435-453(1996). http://ieeexplore.ieee.org/iel1/2944/12381/00571743.pdf

    [41] Schibli T R, Hartl I, Yost D C et al. Optical frequency comb with submillihertz linewidth and more than 10 W average power[J]. Nature Photonics, 2, 355-359(2008). http://www.nature.com/nphoton/journal/v2/n6/abs/nphoton.2008.79.html

    [42] Feng Y, Xu X, Hu X H et al. Environmental-adaptability analysis of an all polarization- maintaining fiber-based optical frequency comb[J]. Optics Express, 23, 17549-17559(2015). http://europepmc.org/abstract/med/26191762

    [43] Togashi H, Nagaike T, Jin L et al. All polarization maintaining optical frequency comb based on Er-doped fiber laser with carbon nanotube. [C]∥Conference on Lasers and Electro-Optics: Science and Innovations 2017, May 14-19, 2017, San Jose, California United States. Washington: Optical Society of America, JW2A, 60(2017).

    [44] Kim J, Song Y J. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications[J]. Advances in Optics and Photonics, 8, 465-540(2016). http://www.opticsinfobase.org/aop/abstract.cfm?uri=aop-8-3-465

    [45] Tamura K, Haus H A, Ippen E P. Self-starting additive pulse mode-locked erbium fibre ring laser[J]. Electronics Letters, 28, 2226-2228(1992). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=173059

    [46] Matsas V J, Newson T P, Richardson D J et al. Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation[J]. Electronics Letters, 28, 1391-1393(1992). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=256032

    [47] Hofer M, Fermann M E, Haberl F et al. Mode locking with cross-phase and self-phase modulation[J]. Optics Letters, 16, 502-504(1991). http://www.opticsinfobase.org/abstract.cfm?uri=ol-16-7-502

    [48] Fermann M E, Stock M L, Andrejco M J et al. Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber[J]. Optics Letters, 18, 894-896(1993). http://www.onacademic.com/detail/journal_1000035243962410_1c3d.html

    [49] Jones D J, Haus H A, Ippen E P. Subpicosecond solitons in an actively mode-locked fiber laser[J]. Optics Letters, 21, 1818-1820(1996). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-21-22-1818

    [50] Nielsen C K, Keiding S R. All-fiber mode-locked fiber laser[J]. Optics Letters, 32, 1474-1476(2007). http://www.ncbi.nlm.nih.gov/pubmed/17546159

    [51] Boivinet S, Lecourt J B, Cserteg A et al. 3.3 MHz repetition rate all-fiber laser oscillator mode-locked by polarization rotation in PM fiber. [C]∥2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference, May 12-16, 2013, Munich, Germany. New York: IEEE, 14252544(2013).

    [52] Shen X L, Li W X, Zeng H P. Polarized dissipative solitons in all-polarization-maintained fiber laser with long-term stable self-started mode-locking[J]. Applied Physics Letters, 105, 101109(2014). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6897704

    [53] Boivinet S, Lecourt J B, Hernandez Y et al. All-fiber 1-m PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate[J]. IEEE Photonics Technology Letters, 26, 2256-2259(2014). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6894127

    [54] Rauschenberger J, Fortier T M, Jones D J et al. Control of the frequency comb from a mode-locked erbium-doped fiber laser: Errata[J]. Optics Express, 11, 1345(2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000002000007000001000001&idtype=cvips&gifs=Yes

    [55] Schibli T R, Minoshima K, Hong F L et al. Frequency metrology with a turnkey all-fiber system[J]. Optics Letters, 29, 2467-2469(2004). http://www.springerlink.com/content/r436314123813480/

    [56] Inaba H, Daimon Y, Hong F L et al. Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb[J]. Optics Express, 14, 5223-5231(2006). http://www.ncbi.nlm.nih.gov/pubmed/19516688

    [57] Peng J L, Ahn H, Shu R H et al. Highly stable, frequency-controlled mode-locked erbium fiber laser comb[J]. Applied Physics B, 86, 49-53(2007). http://link.springer.com/article/10.1007/s00340-006-2476-7

    [58] Nakajima Y, Inaba H, Hosaka K et al. A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator[J]. Optics Express, 18, 1667-1676(2010). http://www.ncbi.nlm.nih.gov/pubmed/20173994

    [59] Wu H Y, Shi L, Ma T et al. Design and development technique for optical frequency comb based on femtosecond fiber lasers[J]. Chinese Journal of Lasers, 44, 0601008(2017).

    [60] Fermann M E, Haberl F, Hofer M et al. Nonlinear amplifying loop mirror[J]. Optics Letters, 15, 752-754(1990).

    [61] Duling I N. All-fiber ring soliton laser mode locked with a nonlinear mirror[J]. Optics Letters, 16, 539-541(1991). http://europepmc.org/abstract/MED/19773991

    [62] Aguergaray C. Broderick N G R, Erkintalo M, et al. Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror[J]. Optics Express, 20, 10545-10551(2012).

    [63] Hao Q, Chen F H, Yang K W et al. Self-started mode-locking with dispersion-imbalanced nonlinear amplifier loop[J]. IEEE Photonics Technology Letters, 28, 87-90(2016). http://ieeexplore.ieee.org/document/7289370/

    [64] Guo Z R, Hao Q, Yang S et al. Octave-spanning supercontinuum generation from an NALM mode-locked Yb-fiber laser system[J]. IEEE Photonics Journal, 9, 1600507(2017). http://ieeexplore.ieee.org/document/7823006/

    [65] Jason Jones R, Diels J C, Jasapara J et al. Stabilization of the frequency, phase, and repetition rate of an ultra-short pulse train to a Fabry-Perot reference cavity[J]. Optics Communications, 175, 409-418(2000). http://www.sciencedirect.com/science/article/pii/S0030401800004831

    [66] Droste S, Ycas G, Washburn B R et al. Optical frequency comb generation based on erbium fiber lasers[J]. Nanophotonics, 5, 196-213(2016). http://adsabs.harvard.edu/abs/2016Nanop...5...19D

    [67] Shen X L. Stability of ultra-fast pulses from fiber lasers[D]. Shanghai: East China Normal University(2015).

    [68] Baumann E, Giorgetta F R, Nicholson J W et al. High-performance, vibration-immune, fiber-laser frequency comb[J]. Optics Letters, 34, 638-640(2009). http://europepmc.org/abstract/MED/19252577

    [69] Zhang W, Lours M, Fischer M et al. Characterizing a fiber-based frequency comb with electro-optic modulator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 59, 432-438(2012). http://europepmc.org/abstract/MED/22481776

    [70] Hudson D D, Holman K W, Jones R J et al. Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator[J]. Optics Letters, 30, 2948-2950(2005). http://www.opticsinfobase.org/abstract.cfm?id=85966

    [71] le Coq Y, Zhang W, Santarelli G et al. . Investigation of an optical frequency comb with intracavity EOM and optimization of microwave generation. [C]∥2012 European Frequency and Time Forum, April 23-27, 2012, Gothenburg, Sweden. New York: IEEE, 238-241(2012).

    [72] Rieger S, Hellwig T, Walbaum T et al. Optical repetition rate stabilization of a mode-locked all-fiber laser[J]. Optics Express, 21, 4889-4895(2013). http://www.ncbi.nlm.nih.gov/pubmed/23482022

    [73] Yang K W, Hao Q, Zeng H P. All-optical high-precision repetition rate locking of an Yb-doped fiber laser[J]. IEEE Photonics Technology Letters, 27, 852-855(2015). http://ieeexplore.ieee.org/document/7029040/

    [74] Hao Q, Zhang Q S, Chen F H et al. All-optical 20-μHz-level repetition rate stabilization of mode locking with a nonlinear amplifying loop mirror[J]. Journal of Lightwave Technology, 34, 2833-2837(2016). http://ieeexplore.ieee.org/document/7448379/

    [75] Fisher R A, Bischel W K. Pulse compression for more efficient operation of solid-state laser amplifier chains[J]. Applied Physics Letters, 24, 468-470(1974). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4844269

    [76] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 55, 447-449(1985). http://www.sciencedirect.com/science/article/pii/0030401885901518

    [77] Anderson D, Desaix M, Karlsson M et al. Wave-breaking-free pulses in nonlinear-optical fibers[J]. Journal of the Optical Society of America B, 10, 1185-1190(1993). http://www.opticsinfobase.org/abstract.cfm?uri=josab-10-7-1185

    [78] Liu X M, Mao D, Wang L R. Recent progress in investigation and application of dissipative soliton in fiber lasers[J]. Chinese Science Bulletin, 57, 3039-3054(2012).

    [79] Papadopoulos D N, Zaouter Y, Hanna M et al. Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit[J]. Optics Letters, 32, 2520-2522(2007). http://europepmc.org/abstract/med/17767291

    [80] Lim J, Knabe K, Tillman K A et al. A phase-stabilized carbon nanotube fiber laser frequency comb[J]. Optics Express, 17, 14115(2009). http://test.europepmc.org/abstract/MED/19654821

    [81] Lim J, Chen H W, Chang G Q et al. Frequency comb based on a narrowband Yb-fiber oscillator: pre-chirp management for self-referenced carrier envelope offset frequency stabilization[J]. Optics Express, 21, 4531-4538(2013). http://www.ncbi.nlm.nih.gov/pubmed/23481986

    [82] Liu Y, Li W X, Luo D P et al. Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier[J]. Optics Express, 24, 10939-10945(2016). http://www.ncbi.nlm.nih.gov/pubmed/27409915

    [83] Zhou S A, Wise F W, Ouzounov D G. Divided-pulse amplification of ultrashort pulses[J]. Optics Letters, 32, 871(2007). http://europepmc.org/abstract/MED/17339965

    [84] Kong L J, Zhao L M, Lefrancois S et al. Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier[J]. Optics Letters, 37, 253-255(2012). http://pubmedcentralcanada.ca/pmcc/articles/PMC3412309/

    [85] Lesparre F, Gomes J T, Délen X et al. Yb∶YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique[J]. Optics Letters, 41, 1628-1631(2016). http://www.ncbi.nlm.nih.gov/pubmed/27192304

    [86] Klenke A, Kienel M, Eidam T et al. Divided-pulse nonlinear compression[J]. Optics Letters, 38, 4593-4596(2013).

    [87] Guichard F, Hanna M, Lombard L et al. Two-channel pulse synthesis to overcome gain narrowing in femtosecond fiber amplifiers[J]. Optics Letters, 38, 5430-5433(2013). http://www.ncbi.nlm.nih.gov/pubmed/24343009

    [88] Guichard F, Hanna M, Zaouter Y et al. Analysis of limitations in divided-pulse nonlinear compression and amplification[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 619-623(2014). http://ieeexplore.ieee.org/document/6778780/

    [89] Yang K W, Hao Q, Zeng H P. Advances in ultrashort divided-pulse amplification systems (Invited)[J]. Infrared and Laser Engineering, 47, 56-64(2018).

    [90] Hao Q, Zhang Q S, Sun T T et al. Divided-pulse nonlinear amplification and simultaneous compression[J]. Applied Physics Letters, 106, 101103(2015). http://scitation.aip.org/content/aip/journal/apl/106/10/10.1063/1.4914882

    [91] Hao Q, Wang Y F, Liu T T et al. Divided-pulse nonlinear amplification at 1.5 μm[J]. IEEE Photonics Journal, 8, 7101908(2016). http://ieeexplore.ieee.org/document/7553574/

    [92] Takayanagi J, Nishizawa N, Nagai H et al. Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system[J]. IEEE Photonics Technology Letters, 17, 37-39(2005). http://ieeexplore.ieee.org/document/1372575/

    [93] Chen Y W, Räikkönen E, Kaasalainen S et al. Two-channel hyperspectral LiDAR with a supercontinuum laser source[J]. Sensors, 10, 7057-7066(2010). http://europepmc.org/articles/PMC3231129/

    [94] Rulkov A B, Vyatkin M Y, Popov S V et al. High brightness picosecond all-fiber generation in 525-1800 nm range with picosecond Yb pumping[J]. Optics Express, 13, 377-381(2005). http://europepmc.org/abstract/MED/19488363

    [95] Kaminski C F, Watt R S, Elder A D et al. Supercontinuum radiation for applications in chemical sensing and microscopy[J]. Applied Physics B, 92, 367-378(2008). http://link.springer.com/article/10.1007/s00340-008-3132-1

    [96] Boyraz O, Kim J, Islam M N et al. 10 Gb/s multiple wavelength, coherent short pulse source based on spectral carving of supercontinuum generated in fibers[J]. Journal of Lightwave Technology, 18, 2167-2175(2000). http://www.opticsinfobase.org/jlt/abstract.cfm?uri=jlt-18-12-2167

    [97] Corwin K L, Newbury N R, Dudley J M et al. Fundamental noise limitations to supercontinuum generation in microstructure fiber[J]. Physical Review Letters, 90, 113904(2003). http://europepmc.org/abstract/MED/12688929

    [98] Newbury N R, Washburn B R, Corwin K L et al. Noise amplification during supercontinuum generation in microstructure fiber[J]. Optics Letters, 28, 944-946(2003). http://www.ncbi.nlm.nih.gov/pubmed/12816254

    [99] Nicholson J M, Yan M T. Cross-coherence measurements of supercontinua generated in highly-nonlinear, dispersion shifted fiber at 1550 nm[J]. Optics Express, 12, 679-688(2004). http://europepmc.org/abstract/MED/19474871

    [100] Dudley J M, Coen S. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers[J]. Optics Letters, 27, 1180-1182(2002). http://www.opticsinfobase.org/abstract.cfm?id=69281

    [101] Han H N, Zhao Y Y, Zhang W et al. Measurement of carrier-envelope phase of few cycles Ti∶sapphire laser by difference frequency technique[J]. Acta Physica Sinica, 56, 2756-2759(2007).

    [102] Fuji T K, Apolonski A, Krausz F. Self-stabilization of carrier-envelope offset phase by use of difference-frequency generation[J]. Optics Letters, 29, 632-634(2004). http://www.ncbi.nlm.nih.gov/pubmed/15035494

    [103] Hitachi K, Ishizawa A, Nishikawa T et al. Carrier-envelope offset locking with a 2f-to-3f self-referencing interferometer using a dual-pitch PPLN ridge waveguide[J]. Optics Express, 22, 1629-1635(2014). http://europepmc.org/abstract/med/24515168

    [104] Reichert J, Holzwarth R, Udem T et al. Measuring the frequency of light with mode-locked lasers[J]. Optics Communications, 172, 59-68(1999).

    [105] Shen X L, Li W X, Yan M et al. Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers[J]. Optics Letters, 37, 3426-3428(2012). http://europepmc.org/abstract/med/23381279

    [106] Coddington I, Swann W, Newbury N. Coherent dual-comb spectroscopy at high signal-to-noise ratio[J]. Physical Review A, 82, 043817(2010).

    [107] Koke S, Grebing C, Frei H et al. Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise[J]. Nature Photonics, 4, 462-465(2010). http://www.nature.com/nphoton/journal/v4/n7/abs/nphoton.2010.91.html

    [108] Nakamura T, Ito I, Kobayashi Y. Offset-free broadband Yb∶fiber optical frequency comb for optical clocks[J]. Optics Express, 23, 19376-19381(2015). http://www.opticsinfobase.org/abstract.cfm?uri=oe-23-15-19376

    [109] Deng Y J, Lu F, Knox W H. Fiber-laser-based difference frequency generation scheme for carrier-envelope-offset phase stabilization applications[J]. Optics Express, 13, 4589-4593(2005). http://europepmc.org/abstract/MED/19495373

    [110] Baltu ka A, Fuji T K, Kobayashi T. Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers[J]. Physical Review Letters, 88, 133901(2002). http://www.ncbi.nlm.nih.gov/pubmed/11955097

    [111] Fehrenbacher D, Sulzer P, Liehl A et al. Free-running performance and full control of a passively phase-stable Er∶fiber frequency comb[J]. Optica, 2, 917-923(2015). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-2-10-917

    [112] Foreman S M, Marian A, Ye J et al. Demonstration of a HeNe/CH4-based optical molecular clock[J]. Optics Letters, 30, 570-572(2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000004000004000017000001&idtype=cvips&gifs=Yes

    [113] Mazzotti D, Cancio P, Giusfredi G et al. Frequency-comb-based absolute frequency measurements in the mid-infrared with a difference-frequency spectrometer[J]. Optics Letters, 30, 997-999(2005). http://www.ncbi.nlm.nih.gov/pubmed/15906982

    [114] Maddaloni P, Malara P, Gagliardi G et al. Mid-infrared fibre-based optical comb[J]. New Journal of Physics, 8, 262(2006). http://adsabs.harvard.edu/abs/2006NJPh....8..262M

    [115] Malara P, Maddaloni P, Gagliardi G et al. Absolute frequency measurement of molecular transitions by a direct link to a comb generated around 3-μm[J]. Optics Express, 16, 8242-8249(2008). http://europepmc.org/abstract/med/18545536

    [116] Yan M, Li W X, Yang K W et al. High-power Yb-fiber comb with feed-forward control of nonlinear-polarization-rotation mode-locking and large-mode-area fiber amplification[J]. Optics Letters, 37, 1511-1513(2012). http://europepmc.org/abstract/med/22555721

    [117] Wu Y J, Ye H Q, Han J et al. Astronomical laser frequency comb for high resolution spectrograph of a 2.16-m telescope[J]. Acta Optica Sinica, 36, 0614001(2016).

    [118] Yang L, Shen X L, Yang K W et al. Analysis and realization of adaptive dual-comb spectroscopy[J]. Acta Optica Sinica, 38, 0514002(2018).

    [119] Lu Q, Shi L, Mao Q H. Research advances in dual-comb spectroscopy[J]. Chinese Journal of Lasers, 45, 0300001(2018).

    Tingting Liu, Qiang Hao, Heping Zeng. All Polarization-Maintaining Fiber-Based Frequency Combs[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120003
    Download Citation