• Opto-Electronic Advances
  • Vol. 2, Issue 10, 190023 (2019)
Takashi Yatsui*
Author Affiliations
  • School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
  • show less
    DOI: 10.29026/oea.2019.190023 Cite this Article
    Takashi Yatsui. Recent improvement of silicon absorption in opto‐electric devices[J]. Opto-Electronic Advances, 2019, 2(10): 190023 Copy Citation Text show less
    References

    [1] M A Green, K Emery, Y Hishikawa, W Warta, E D Dunlop. Solar cell efficiency tables (Version 45). Prog Photovoltaics: Res Appl, 23, 1-9(2015).

    [2] C Battaglia, A Cuevas, S De Wolf. High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ Sci, 9, 1552-1576(2016).

    [3] T Yatsui, S Okada, T Takemori, T Sato, K Saichi et al. Enhanced photo-sensitivity in a Si photodetector using a near-field assisted excitation. Commun Phys, 2, 62(2019).

    [4] R Soref. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron, 12, 1678-1687(2006).

    [5] M Asghari, A V Krishnamoorthy. Energy-efficient communication. Nat Photonics, 5, 268-270(2011).

    [6] S Wirths, R Geiger, N von den Driesch, G Mussler, T Stoica et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nat Photonics, 9, 88-92(2015).

    [7] M Romagnoli, V Sorianello, M Midrio, F H L Koppens, C Huyghebaert et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat Rev Mater, 3, 392-414(2018).

    [8] M Kirkengen, J Bergli, Y M Galperin. Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles. J Appl Phys, 102, 093713(2007).

    [9] J Jung, M L Trolle, K Pedersen, T G Pedersen. Indirect near-field absorption mediated by localized surface plasmons. Phys Rev B, 84, 165447(2011).

    [10] M Yamaguchi, K Nobusada. Indirect interband transition induced by optical near fields with large wave numbers. Phys Rev B, 93, 195111(2016).

    [11] R M Martin. Electronic Structure: Basic Theory and Practical Methods(2004).

    [12] N W Ashcroft, N D Mermin. Solid State Physics(1976).

    [13] J D Jackson. Classical Electrodynamics(1962).

    [14] M Noda, K Iida, M Yamaguchi, T Yatsui, K Nobusada. Direct wave-vector excitation in an indirect-band-gap semiconductor of silicon with an optical near-field. Phys Rev Appl, 11, 044053(2019).

    [15] M Noda, K Ishimura, K Nobusada, K Yabana, T Boku. Massively-parallel electron dynamics calculations in real-time and real-space: Toward applications to nanostructures of more than ten-nanometers in size. J Comput Phys, 265, 145-155(2014).

    [16] M Noda, M Yamaguchi, K Nobusada. Second harmonic excitation of acetylene by the optical near field generated in a porous material. J Phys Chem C, 121, 11687-11692(2017).

    [17] K Iida, M Noda, K Nobusada. Development of theoretical approach for describing electronic properties of hetero-interface systems under applied bias voltage. J Chem Phys, 146, 084706(2017).

    [18] S C Baker-Finch, K R McIntosh. Reflection distributions of textured monocrystalline silicon: implications for silicon solar cells. Prog Photovoltaics: Res Appl, 21, 960-971(2013).

    [19] K Q Peng, Y Xu, Y Wu, Y J Yan, S T Lee et al. Aligned single-crystalline si nanowire arrays for photovoltaic applications. Small, 1, 1062-1067(2005).

    [20] M Y Shen, C H Crouch, J E Carey, E Mazur. Femtosecond laser-induced formation of submicrometer spikes on silicon in water. Appl Phys Lett, 85, 5694-5696(2004).

    [21] T Sarnet, J E Carey, E Mazur. From black silicon to photovoltaic cells, using short pulse lasers. AIP Conf Proc, 1464, 219-228(2012).

    [22] H Savin, P Repo, G von Gastrow, P Ortega, E Calle et al. Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nat Nanotechnol, 10, 624-628(2015).

    [23] D M Schaadt, B Feng, E T Yu. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett, 86, 063106(2005).

    [24] K Nakayama, K Tanabe, H A Atwater. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett, 93, 121904(2008).

    [25] C F Bohren, D R Huffman. Absorption and Scattering of Light by Small Particles(1998).

    [26] H R Stuart, D G Hall. Absorption enhancement in silicon-on-insulator waveguides using metal island films. Appl Phys Lett, 69, 2327-2329(1996).

    [27] S Pillai, K R Catchpole, T Trupke, M A Green. Surface plasmon enhanced silicon solar cells. J Appl Phys, 101, 093105(2007).

    [28] K R Catchpole, A Polman. Design principles for particle plasmon enhanced solar cells. Appl Phys Lett, 93, 191113(2008).

    [29] K R Catchpole, A Polman. Plasmonic solar cells. Opt Express, 16, 21793-21800(2008).

    [30] M D Kelzenberg, S W Boettcher, J A Petykiewicz, D B Turner-Evans, M C Putnam et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater, 9, 239-244(2010).

    [31] M D Kelzenberg, D B Turner-Evans, M C Putnam, S W Boettcher, R M Briggs et al. High-performance Si microwire photovoltaics. Energy Environ Sci, 4, 866-871(2011).

    [32] J Grand, P M Adam, A S Grimault, A Vial, M L de la Chapelle et al. Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory. Plasmonics, 1, 135-140(2006).

    [33] Q H Wei, K H Su, S Durant, X Zhang. Plasmon resonance of finite one-dimensional Au nanoparticle chains. Nano Lett, 4, 1067-1071(2004).

    [34] P Y Fan, U K Chettiar, L Y Cao, F Afshinmanesh, N Engheta et al. An invisible metal-semiconductor photodetector. Nat Photonics, 6, 380-385(2012).

    [35] Y Wang, T Y Sun, T Paudel, Y Zhang, Z F Ren et al. Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Nano Lett, 12, 440-445(2012).

    [36] M Esfandyarpour, E C Garnett, Y Cui, M D McGehee, M L Brongersma. Metamaterial mirrors in optoelectronic devices. Nat Nanotechnol, 9, 542-547(2014).

    [37] T Yatsui, W Nomura, M Ohtsu. Self-assembly of size- and position-controlled ultralong nanodot chains using near-field optical desorption. Nano Lett, 5, 2548-2551(2005).

    [38] S Yukutake, T Kawazoe, T Yatsui, W Nomura, K Kitamura et al. Selective photocurrent generation in the transparent wavelength range of a semiconductor photovoltaic device using a phonon-assisted optical near-field process. Appl Phys B, 99, 415-422(2010).

    [39] G V Naik, V M Shalaev, A Boltasseva. alternative plasmonic materials: beyond gold and silver. Adv Mater, 25, 3264-3294(2013).

    [40] H Matsui, W Badalawa, T Hasebe, S Furuta, W Nomura et al. Coupling of Er light emissions to plasmon modes on In2O3: Sn nanoparticle sheets in the near-infrared range. Appl Phys Lett, 105, 041903(2014).

    [41] I Goykhman, B Desiatov, J Khurgin, J Shappir, U Levy. Locally oxidized silicon surface-plasmon schottky detector for telecom regime. Nano Lett, 11, 2219-2224(2011).

    [42] M W Knight, H Sobhani, P Nordlander, N J Halas. Photodetection with active optical antennas. Science, 332, 702-704(2011).

    [43] A Sobhani, M W Knight, Y M Wang, B Zheng, N S King et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat Commun, 4, 1643(2013).

    [44] Y L Ho, L C Huang, J J Delaunay. Spectrally selective photocapacitance modulation in plasmonic nanochannels for infrared imaging. Nano Lett, 16, 3094-3100(2016).

    [45] J I Pankove. Optical Processes in Semiconductors(1971).

    [46] J J Loferski. Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion. J Appl Phys, 27, 777-784(1956).

    [47] A Taflove, S C Hagness. Computational Electrodynamics: The Finite-Difference Time-Domain Method 3rd ed(2005).

    [48] S Richard, F Aniel, G Fishman. Energy-band structure of Ge, Si, and GaAs: A thirty-band kp method. Phys Rev B, 70, 235204(2004).

    [49] S A Maier. Plasmonics: Fundamentals and Applications(2007).

    [50] N Koshida, H Koyama. Visible electroluminescence from porous silicon. Appl Phys Lett, 60, 347-349(1992).

    [51] J P Zheng, K L Jiao, W P Shen, W A Anderson, H S Kwok. Highly sensitive photodetector using porous silicon. Appl Phys Lett, 61, 459-461(1992).

    [52] T Yatsui, M Ohtsu. Production of size-controlled Si nanocrystals using self-organized optical near-field chemical etching. Appl Phys Lett, 95, 043104(2009).

    [53] T Yatsui, Y Nakahira, Y Nakamura, T Morimoto, Y Kato et al. Realization of red shift of absorption spectra using optical near-field effect. Nanotechnology, 30, 34LT02(2019).

    [54] T Iwasa, K Nobusada. Nonuniform light-matter interaction theory for near-field-induced electron dynamics. Phys Rev A, 80, 043409(2009).

    [55] M Yamaguchi, K Nobusada, T Kawazoe, T Yatsui. Two-photon absorption induced by electric field gradient of optical near-field and its application to photolithography. Appl Phys Lett, 106, 191103(2015).

    [56] M Yamaguchi, K Nobusada, T Yatsui. Nonlinear optical response induced by a second-harmonic electric-field component concomitant with optical near-field excitation. Phys Rev A, 92, 043809(2015).

    [57] M Yamaguchi, K Nobusada. Large hyperpolarizabilities of the second harmonic generation induced by nonuniform optical near fields. J Phys Chem C, 120, 23748-23755(2016).

    [58] C Z Fang, Y Liu, Q F Zhang, G Q Han, X Gao et al. Germanium-tin alloys: applications for optoelectronics in mid-infrared spectra. Opto-Electron Adv, 1, 180004(2018).

    [59] S D Lei, L H Ge, S Najmaei, A George, R Kappera et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS Nano, 8, 1263-1272(2014).

    [60] H Li, X Han, D Pan, X Yan, H W Wang et al. Bandgap engineering of inse single crystals through S substitution. Cryst Growth Des, 18, 2899-2904(2018).

    [61] M J Hamer, J Zultak, A V Tyurnina, V Zólyomi, D Terry et al. Indirect to direct gap crossover in two-dimensional InSe revealed by angle-resolved photoemission spectroscopy. ACS Nano, 13, 2136-2142(2019).

    [62] X D Wang, P Wang, J L Wang, W D Hu, X H Zhou et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv Mater, 27, 6575-6581(2015).

    [63] D Kufer, G Konstantatos. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett, 15, 7307-7313(2015).

    [64] L Tang, S E Kocabas, S Latif, A K Okyay, D S Ly-Gagnon et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nat Photonics, 2, 226-229(2008).

    [65] X P Chen, H L Zhu, J F Cai. High-performance 4H-SiC-based ultraviolet p-i-n photodetector. J Appl Phys, 102, 024505(2007).

    [66] M Y Liao, X Wang, T Teraji, S Koizumi, Y Koide. Light intensity dependence of photocurrent gain in single-crystal diamond detectors. Phys Rev B, 81, 033304(2010).

    [67] S Koizumi, K Watanabe, M Hasegawa, H Kanda. Ultraviolet emission from a diamond pn junction. Science, 292, 1899-1901(2001).

    [68] R E Camacho-Aguilera, Y Cai, N Patel, J T Bessette, M Romagnoli et al. An electrically pumped germanium laser. Opt Express, 20, 11316-11320(2012).

    [69] R K Joshi, S Shukla, S Saxena, G H Lee, V Sahajwalla et al. Hydrogen generation via photoelectrochemical water splitting using chemically exfoliated MoS2 layers. AIP Adv, 6, 015315(2016).

    Takashi Yatsui. Recent improvement of silicon absorption in opto‐electric devices[J]. Opto-Electronic Advances, 2019, 2(10): 190023
    Download Citation