• Chinese Journal of Ship Research
  • Vol. 17, Issue 5, 157 (2022)
Haoliang WANG1, Chenyang YIN1, Liyu LU1, Dan WANG2, and Zhouhua PENG2
Author Affiliations
  • 1College of Marine Engineering , Dalian Maritime University, Dalian 116026, China
  • 2College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, China
  • show less
    DOI: 10.19693/j.issn.1673-3185.02916 Cite this Article
    Haoliang WANG, Chenyang YIN, Liyu LU, Dan WANG, Zhouhua PENG. Cooperative path following control of UAV and USV cluster for maritime search and rescue[J]. Chinese Journal of Ship Research, 2022, 17(5): 157 Copy Citation Text show less

    Abstract

    Objectives

    This paper studies a three-dimensional (3D) cooperative path-following control problem in the process of maritime search and rescue for a heterogeneous unmanned cluster system composed of unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs).

    Methods

    First, kinematic models of the UAVs and USVs are established under a fixed coordinate system and body coordinate system. In order to design a 3D path-following controller suitable for motion control, an air coordinate system is established, and the path tracking error models of the UAVs and USVs are established in the Serret-Frenet coordinate system. Next, a 3D line-of-sight (LOS) guidance law is designed at the kinematic level, and a cooperative path-following control method suitable for heterogeneous clusters of marine vehicles is proposed, allowing the UAVs and USVs to track the preset parameterized path. Finally, the stability of the control system is analyzed based on the Lyapunov stability theory.

    Results

    The simulation results verify the effectiveness of the proposed cooperative path-following control method for heterogeneous clusters of marine vehicles.

    Conclusions

    The results of this study can provide references for maritime search and rescue by using the proposed cooperative path-following control method.

    $ \left\{ x˙si=usicosψsivsisinψsiy˙si=usisinψsi+vsicosψsiψ˙si=rsi \right. $(1)

    View in Article

    $ \left\{ x˙ai=uaicosψaicosθai+vai(cosψaisinθaisinϕaisinψaisinϕai)+wai(sinψaisinϕai+cosψaisinθaicosϕai)y˙ai=uaisinψaicosθai+vai(cosψaicosϕai+sinψaisinθaisinϕai)+wai(sinψaisinθaicosϕaicosψaisinϕai)z˙ai=uaisinθai+vaicosθaisinϕai+waicosθaicosϕaiϕ˙ai=(paicosθai+qaisinϕaisinθai+raicosϕaisinθai)/cosθaiθ˙ai=qaicosϕai+raisinϕaiψ˙ai=(qaisinϕai+raicosϕai)/cosθai \right. $(2)

    View in Article

    $ \left\{ x˙si=UsicosψsiWy˙si=UsisinψsiWψ˙siW=rsi+βsid\right. $(3)

    View in Article

    $ {\psi _{{\text{s}}i{\text{d}}}} = {\text{atan}}2\left( {{{y}'_{{\text{s}}i{\text{d}}}},{{x}'_{{\text{s}}i{\text{d}}}}} \right) $(4)

    View in Article

    $ \left[ {xsieysie} \right] = {\left[ {cosψsidsinψsidsinψsidcosψsid} \right]^{\text{T}}}\left[ {xsixsid(χsi)ysiysid(χsi)} \right] $(5)

    View in Article

    $ \left\{ x˙sie=Usicos(ψsiWψsid)+ψ˙sidysieUsidχ˙siy˙sie=Usisin(ψsiWψsid)ψ˙sidxsie\right. $(6)

    View in Article

    $ \left\{ x˙ai=UaicosΨaicosΘaiy˙ai=UaisinΨaicosΘaiz˙ai=UaisinΘaiΘ˙ai=qaiα˙aiΨ˙ai=raicosθai+β˙ai \right. $(7)

    View in Article

    $ \left\{ θaid(χai)=arctan(zaid(χai)xaid2(xai)+yaid2(χai))ψaid(χai)=arctan(yaid(χai)xaid(χai))\right. $(8)

    View in Article

    $ {\boldsymbol{R}}_{{\text{Fa}}i}^{\text{I}} = \left( {cosθaidcosψaidsinψaidsinθaidcosψaidcosθaidsinψaidcosψaidsinθaidsinψaidsinθaid0cosθaid} \right) $(9)

    View in Article

    $ {{\boldsymbol{\varepsilon }}_{{\text{a}}i}} = {\boldsymbol{R}}_{{\text{Fa}}i}^{{\text{IT}}}\left( {{{\boldsymbol{\eta }}_{{\text{a}}i}} - {{\boldsymbol{\eta }}_{{\text{a}}i{\text{d}}}}} \right) $(10)

    View in Article

    $ {{\boldsymbol{\dot \varepsilon }}_{{\text{a}}i}} = {\boldsymbol{\dot R}}_{{\text{Fa}}i}^{{\text{IT}}}\left( {{{\boldsymbol{\eta }}_{{\text{a}}i}} - {{\boldsymbol{\eta }}_{{\text{a}}i{\text{d}}}}} \right) + {\boldsymbol{R}}_{{\text{Fa}}i}^{{\text{IT}}}\left( {{{{\boldsymbol{\dot \eta }}}_{{\text{a}}i}} - {{{\boldsymbol{\dot \eta }}}_{{\text{a}}i{\text{d}}}}} \right) $(11)

    View in Article

    $ {{\boldsymbol{S}}_{{\text{Fa}}i}} = \left[ {0ψ˙aidcosθaidθ˙aidψ˙aidcosθaid0ψ˙aidsinθaidθ˙aidψ˙aidsinθaid0} \right] $(12)

    View in Article

    $ {\boldsymbol{R}}_{{\text{Aa}}i}^{\text{F}} = \left[ {cosθaieFcosψaieFsinψaieFsinθaieFcosψaieFcosθaieFsinψaieFcosψaieFsinθaieFsinψaieFsinθaieF0cosθaieF} \right] $(13)

    View in Article

    $ {{\boldsymbol{\dot \eta }}_{{\text{a}}i}} = {\boldsymbol{R}}_{{\text{Fa}}i}^{\text{I}}{\boldsymbol{R}}_{{\text{Aa}}i}^{\text{F}}{{\boldsymbol{U}}_{{\text{a}}i{\text{A}}}} $(14)

    View in Article

    $ \boldsymbolε˙ai=\boldsymbolSFaiT\boldsymbolRFaiIT(\boldsymbolηai\boldsymbolηaid)+\boldsymbolRFaiIT(\boldsymbolη˙ai\boldsymbolη˙aid)=\boldsymbolSFaiT\boldsymbolεai+\boldsymbolRFaiIT\boldsymbolUaiA\boldsymbolRFaiIT\boldsymbolη˙aid$(15)

    View in Article

    $ \left\{ x˙aie=UaicosψaieFcosθaieF+ψ˙aidcosθaidyaieθ˙aidzaieUaidχ˙aiy˙aie=UaisinψaieFcosθaieFψ˙aidcosθaidxaieψ˙aidsinθaidzaiez˙aie=UaisinθaieF+θ˙aidxaie+ψ˙aidsinθaidyaie\right. $(16)

    View in Article

    $ \underset{t\to \infty }{\mathrm{lim}}\left|{x}_{i\text{e}}\right|\to 0,\underset{t\to \infty }{\mathrm{lim}}\left|{y}_{i\text{e}}\right|\to 0,\underset{t\to \infty }{\mathrm{lim}}\left|{\textit{z}}_{i\text{e}}\right|\to 0 $(17)

    View in Article

    $ \underset{t\to \infty }{\mathrm{lim}}\left|{\chi }_{i}-{\chi }_{j}\right|\to 0 $(18)

    View in Article

    $ \left\{ Θaie=θaiαaiΘaiθΨaie=ψai+βaiΨaiψχ˙ai=vaωai \right. $(19)

    View in Article

    $ \left\{ x˙aie=UaiUaisin2((ψaieF+θaieF)/2)+ψ˙aidcosθaidyaieUaisin2((ψaieFθaieF)/2)θ˙aidzaieUaidχ˙aiy˙aie=UaisinψaieFcosθaieFψ˙aidcosθaidxaieψ˙aidsinθaidzaiez˙aie=UaisinθaieF+θ˙aidxaie+ψ˙aidsinθaidyaieΘ˙aie=qaiqα˙aiΘ˙aiθΨ˙aie=rair/cosθai+βaiΨ˙aiψ \right. $(20)

    View in Article

    $ \left\{ UaiU=kai1xaie/Πaix+Uaisin2((ψaieF+θaieF)/2)+Uaisin2((ψaieFθaieF)/2)+UaidvaΘaiθ=θaid+θaieFΨaiψ=ψaid+ψaieFqaiq=kai2Θaie/Πaiθ+α˙ai+Θ˙aiθrair=kai3Ψaiecosθai/Πaiψ(β˙aiΨ˙aiψ)cosθai \right. $(21)

    View in Article

    $ \left\{ x˙aie=kai1xaie/Πaix+Uaidωi+ψ˙aidcosθaidyaieθ˙aidzaiey˙aie=UaicosθaieFyaie/Πaiyψ˙aidcosθaidxaieψ˙aidsinθaidzaiez˙aie=Uaizaie/Πaiz+θ˙aidxaie+ψ˙aidsinθaidyaieΘ˙aie=kai2Θaie/ΠaiθΨ˙aie=kai3Ψaie/Πaiψ\right. $(22)

    View in Article

    $ \left\{ Ψsie=ψsiWψsirχ˙si=vsωsi \right. $(23)

    View in Article

    $ \left\{ x˙sie=Usi2Usisin2(ψsiWψsid2)+ψ˙sidysieUsid(vsωsi)y˙sie=Usisin(ψsirψsid)+ϱsiψ˙sidxsieΨ˙sie=rsi+βsidψ˙sir \right. $(24)

    View in Article

    $ \left\{ Usir=ksi4xsie/Πsix+Usidvs+2Usisin2(ψsiWψsid2)rsir=ksi5Ψsie/Πsiψβsid+ψ˙sirysieϱsi/Ψsie \right. $(25)

    View in Article

    $ {\psi _{{\text{s}}ir}} = {\psi _{{\text{s}}i{\text{d}}}} + \arctan \left( { - \frac{{{y_{{\text{s}}i{\text{e}}}}}}{{{l _{{\text{s}}i}}}}} \right) $(26)

    View in Article

    $ \left\{ x˙sie=ksi4xsie/Πsix+Usidωsi+ψ˙sidysiey˙sie=Usiysie/Πsiy+ϱsiψ˙sidxsieΨ˙sie=ksi5Ψsie/Πsiψysieϱsi/Ψsie\right. $(27)

    View in Article

    $ {e}_{i}=\sum _{j=1}^{N}{a}_{ij}\left({\chi }_{i}-{\chi }_{j}\right) $(28)

    View in Article

    $ {\omega _i} = {\,\mu _i}{e_i} - {\,\mu _i}U_{i{\text{d}}}^*{x_{i{\text{e}}}} $(29)

    View in Article

    $ \left\{ x˙sie=ksi4xsie/Πsix+Usidωsi+ψ˙sidysiey˙sie=Usiysie/Πsiy+ϱsiψ˙sidxsieΨ˙sie=ksi5Ψsie/Πsiψysieϱsi/Ψsiex˙aie=kai1xaie/Πaix+Uaidωi+ψ˙aidcosθaidyaieθ˙aidzaiey˙aie=UaicosθaieFyaie/Πaiyψ˙aidcosθaidxaieψ˙aidsinθaidzaiez˙aie=Uaizaie/Πaiz+θ˙aidxaie+ψ˙aidsinθaidyaieΘ˙aie=kai2Θaie/ΠaiθΨ˙aie=kai3Ψaie/Πaiψe˙i=\boldsymbolLωi \right. $(30)

    View in Article

    $ V1=12i=1M{xsie2+ysie2+Ψsie2}+12i=M+1N{xaie2+yaie2+zaie2+Θaie2+Ψaie2}+\boldsymbolχT\boldsymbolL\boldsymbolχ $(31)

    View in Article

    $ V1=12i=1M{xsie2+ysie2+Ψsie2}+12i=M+1N{xaie2+yaie2+zaie2+Θaie2+Ψaie2}+\boldsymboleT\boldsymbolPe $(32)

    View in Article

    $ V˙1i=1M{ksi4xsie2Πsix+UsidωixsieUsiysie2Πsiyksi5Ψsie2Πsiψ}+i=M+1N{kai1xaie2ΠaixUaicosθaieFyaie2ΠaiyUaizaie2Πaizkai2Θaie2Πaiθkai3Ψaie2Πaiψ+Uaidωixaie}\boldsymbolχT\boldsymbolL\boldsymbolωi=1M{ksi4xsie2ΠsixUsiysie2Πsiyksi5Ψsie2Πsiψ}+i=M+1N{kai1xaie2ΠaixUaicosθaieFyaie2ΠaiyUaizaie2Πaiz$()

    View in Article

    $ \left. \frac{{{k_{{\text{a}}i2}}\varTheta _{{\text{a}}i{\text{e}}}^2}}{{{\varPi _{{\text{a}}i\theta }}}} - \frac{{{k_{{\text{a}}i3}}\varPsi _{{\text{a}}i{\text{e}}}^2}}{{{\varPi _{{\text{a}}i\psi }}}} \right\} - {\lambda _{\min }}\left(\boldsymbol{ \,\mu } \right){\left\| \boldsymbol{\vartheta } \right\|^2} $(33)

    View in Article

    $ {{\boldsymbol{e}}^{\text{T}}}{\boldsymbol{Pe}}\ge {\lambda }^{\ast }{\left\| \boldsymbol{\chi} -{\boldsymbol{1}}_{N}\frac{1}{N}\sum _{i=1}^{N}{\chi }_{i}\right\| }^{2} $(34)

    View in Article

    Haoliang WANG, Chenyang YIN, Liyu LU, Dan WANG, Zhouhua PENG. Cooperative path following control of UAV and USV cluster for maritime search and rescue[J]. Chinese Journal of Ship Research, 2022, 17(5): 157
    Download Citation