• Matter and Radiation at Extremes
  • Vol. 7, Issue 6, 064402 (2022)
Zhaohui Wu1、2、*, Yanlei Zuo1、2, Xiaoming Zeng1、2, Zhaoli Li1, Zhimeng Zhang1、2, Xiaodong Wang1, Bilong Hu1、2, Xiao Wang1, Jie Mu1、2, Jingqin Su1、2, Qihua Zhu1、2, and Yaping Dai1、2
Author Affiliations
  • 1Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
  • 2Zhongshan Photon Science, ZhongShan 528400, Guangdong, China
  • show less
    DOI: 10.1063/5.0109574 Cite this Article
    Zhaohui Wu, Yanlei Zuo, Xiaoming Zeng, Zhaoli Li, Zhimeng Zhang, Xiaodong Wang, Bilong Hu, Xiao Wang, Jie Mu, Jingqin Su, Qihua Zhu, Yaping Dai. Laser compression via fast-extending plasma gratings[J]. Matter and Radiation at Extremes, 2022, 7(6): 064402 Copy Citation Text show less
    References

    [1] G.Lehmann, K. H.Spatschek. Transient plasma photonic crystals for high-power lasers. Phys. Rev. Lett., 116, 225002(2016).

    [2] G.Mennerat, A.Denoeud, P.Martin, L.Chopineau, A.Leblanc, F.Quéré. Plasma holograms for ultrahigh-intensity optics. Nat. Phys., 13, 440(2017).

    [3] I. Y.Dodin, N. J.Fisch. Storing, retrieving, and processing optical information by Raman backscattering in plasmas. Phys. Rev. Lett., 88, 165001(2002).

    [4] C. G. Durfee, H. M.Milchberg, T. J.McIlrath. High-order frequency conversion in the plasma waveguide. Phys. Rev. Lett., 75, 2494(1995).

    [5] T.Ceccotti, P.Martin, P.Audebert, M.Bougeard, R.Marjoribanks, F.Réau, J.-P.Geindre, C.Thaury, P.d’Oliveira, A.Levy, F.Quéré, P.Monot. Plasma mirrors for ultrahigh-intensity optics. Nat. Phys., 3, 424-429(2007).

    [6] K.Krushelnick, M.Zepf, P.Norreys, M. S.Wei, R.Clarke, H.Habara, B.Dromey, M.Tampo, S.Moustaizis, A.Gopal, S.Karsch, R.Kodama, N.Vakakis, C.Stoeckl, M.Tatarakis, K.Lancaster, D.Neely. High harmonic generation in the relativistic limit. Nat. Phys., 2, 456-459(2006).

    [7] S.Suckewer, I.Geltner, Y.Avitzour. Picosecond pulse frequency upshifting by rapid free-carrier creation in ZnSe. Appl. Phys. Lett., 81, 226(2002).

    [8] M. R.Edwards, K.Qu, N. J.Fisch, Q.Jia. Theory of electromagnetic wave frequency upconversion in dynamic media. Phys. Rev. E, 98, 023202(2018).

    [9] D.Turnbull, A. S.Davies, D. H.Froula, P.Franke, J. P.Palastro, A. J.Howard. Photon acceleration in a flying focus. Phys. Rev. Lett., 123, 124801(2019).

    [10] S.Weber, C. T.Zhou, H.Peng, S. C.Ruan, C.Riconda. Frequency conversion of lasers in a dynamic plasma grating. Phys. Rev. Appl., 15, 054053(2021).

    [11] J.Zhang, H.-C.Wu, Z.-M.Sheng. Chirped pulse compression in nonuniform plasma Bragg gratings. Appl. Phys. Lett., 87, 201502(2005).

    [12] V. M.Malkin, G.Shvets, N. J.Fisch. Fast compression of laser beams to highly overcritical powers. Phys. Rev. Lett., 82, 4448-4451(1999).

    [13] C.Riconda, A. A.Andreev, S.Weber, V. T.Tikhonchuk. Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime. Phys. Plasmas, 13, 053110(2006).

    [14] V.Malka, S.Kiselev, J. J.Santos, Y.Glinec, A.Pukhov, F.Ewald, J.Faure, T.Hosokai, J.-P.Rousseau. Observation of laser-pulse shortening in nonlinear plasma waves. Phys. Rev. Lett., 95, 205003(2005).

    [15] Z.Najmudin, C.Kamperidis, S. R.Nagel, C.Bellei, C. A. J.Palmer, P. P.Rajeev, J.Schreiber, S.Kneip, S. P. D.Mangles, M. J. V.Streeter. Complete temporal characterization of asymmetric pulse compression in a laser wakefield. Phys. Rev. Lett., 105, 235003(2010).

    [16] V. M.Malkin, G.Shvets, N. J.Fisch. Detuned Raman amplification of short laser pulses in plasma. Phys. Rev. Lett., 84, 1208-1211(2000).

    [17] R. A.Fonseca, P. A.Norreys, R.Bingham, R. A.Cairns, F.Fiúza, L. O.Silva, R. M. G. M.Trines. Simulations of efficient Raman amplification into the multipetawatt regime. Nat. Phys., 7, 87-92(2011).

    [18] J. R.Marquès, C.Riconda, J.Fuchs, L.Lancia, S.Weber, G. A.Mourou. Amplification of ultrashort laser pulses by Brillouin backscattering in plasmas. Phys. Rev. Lett., 111, 055004(2013).

    [19] J.Fuchs, C.Riconda, J. R.Marquès, T.Gangolf, A.Frank, M.Chiaramello, S.Weber, L.Vassura, M. N.Quinn, A.Chatelain, A.Castan, L.Lancia, A.Giribono. Signatures of the self-similar regime of strongly coupled stimulated Brillouin scattering for efficient short laser pulse amplification. Phys. Rev. Lett., 116, 075001(2016).

    [20] J. Q.Su, Z. M.Zhang, H.Peng, Y. L.Zuo, K. N.Zhou, Z. H.Wu. Single laser pulse compression via strongly coupled stimulated Brillouin scattering in plasma. Phys. Plasmas, 23, 073516(2016).

    [21] Y.Ping, N. J.Fisch, D. S.Clark, S.Suckewer, W.Cheng. Amplification of ultrashort laser pulses by a resonant Raman scheme in a gas-jet plasma. Phys. Rev. Lett., 92, 175007(2004).

    [22] S.Suckewer, Y.Ping, N. J.Fisch, M. S.Hur, J. S.Wurtele, Y.Avitzour, W.Cheng. Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses. Phys. Rev. Lett., 94, 045003(2005).

    [23] S.Suckewer, S.Li, J.Ren, W.Cheng. A new method for generating ultraintense and ultrashort laser pulses. Nat. Phys., 3, 732-736(2007).

    [24] D.Turnbull, S.Suckewer, A.Morozov, S.Li. Possible origins of a time-resolved frequency shift in Raman plasma amplifiers. Phys. Plasmas, 19, 073103(2012).

    [25] A.Morozov, S.Li, D.Turnbull, S.Suckewer. Simultaneous stimulated Raman, Brillouin, and electron-acoustic scattering reveals a potential saturation mechanism in Raman plasma amplifiers. Phys. Plasmas, 19, 083109(2012).

    [26] P.Grant, G. H.Welsh, S. R.Yoffe, M. S.Hur, G.Vieux, J. M.Dias, P.Lepipas, C.Ciocarlan, D. W.Grant, G. G.Manahan, S. M.Wiggins, X.Yang, G.Nersisyan, D. A.Jaroszynski, A.Pukhov, S.Cipiccia, J. P.Farmer, N.Lemos, E.Brunetti, C. L. S.Lewis, R.Heathcote, A.Subiel, G.Raj, D.Reboredo Gil, B.Ersfeld, C.Aniculaesei. An ultra-high gain and efficient amplifier based on Raman amplification in plasma. Sci. Rep., 7, 2399(2017).

    [27] S.Suckewer, Q.Chen, Z.Wu, A.Morozov. Stimulated Raman backscattering amplification with a low-intensity pump. Phys. Plasmas, 26, 103111(2019).

    [28] P.Antici, J. R.Marquès, S.Weber, A.Héron, A.Manci?, C.Riconda, L.Lancia, J.Fuchs, V. T.Tikhonchuk, S.Hüller, P.Audebert, M.Nakatsutsumi. Experimental evidence of short light pulse amplification using strong-coupling stimulated Brillouin scattering in the pump depletion regime. Phys. Rev. Lett., 104, 025001(2010).

    [29] F.Amiranoff, R. L.Berger, S.Bolanos, M.Chiaramello, J.Fuchs, O.Willi, S.Weber, C.Riconda, L.Lancia, M.Blecher, T.Gangolf, J.-R.Marqués. Joule-level high-efficiency energy transfer to subpicosecond laser pulses by a plasma-based amplifier. Phys. Rev. X, 9, 021008(2019).

    [30] N. J.Fisch, N. A.Yampolsky. Limiting effects on laser compression by resonant backward Raman scattering in modern experiments. Phys. Plasmas, 18, 056711(2011).

    [31] N. J.Fisch, V. M.Malkin. Backward Raman amplification of ionizing laser pulses. Phys. Plasmas, 8, 4698(2001).

    [32] I.Barth, N. J.Fisch, K.Qu. Plasma wave seed for Raman amplifiers. Phys. Rev. Lett., 118, 164801(2017).

    [33] D. S.Levin, A. A.Balakin, S. A.Skobelev. Compression of laser pulses due to Raman amplification of plasma noises. Phys. Rev. A, 102, 013516(2020).

    [34] W. L.Kruer. The Physics of Laser Plasma Interactions(1988).

    [35] W.Cheng. Reaching the nonlinear regime of the Raman amplification of ultrashort laser pulses(2010).

    [36] X. T.He, Z. M.Zhang, M. Y.Yu, Z. M.Sheng. Hundreds MeV monoenergetic proton bunch from interaction of 1020–21 W/cm2 circularly polarized laser pulse with tailored complex target. Appl. Phys. Lett., 100, 134103(2012).

    [37] W.Hong, Y. Q.Gu, M. Y.Yu, B.Zhang, J.Teng, Z. M.Zhang, S. K.He. Envelope matching for enhanced backward Raman amplification by using self-ionizing plasmas. Phys. Plasmas, 21, 123109(2014).

    [38] J.Teng, Z. G.Deng, Y. Q.Gu, S. K.He, Z. M.Zhang, W. M.Zhou, W.Hong, B.Zhang. Generation of high-power few-cycle lasers via Brillouin-based plasma amplification. Phys. Plasmas, 24, 113104(2017).

    [39] N. J.Fisch, D. S.Clark. Regime for a self-ionizing Raman laser amplifier. Phys. Plasmas, 9, 2772(2002).

    [40] S.Bucht, J. L.Shaw, D.Turnbull, A.Davies, T.Kessler, D.Haberberger, D. H.Froula. Raman amplification with a flying focus. Phys. Rev. Lett., 120, 024801(2018).

    [41] I. A.Begishev, S.Bucht, J.Katz, A. S.Davies, D.Haberberger, R.Boni, S.-W.Bahk, J. P.Palastro, J. L.Shaw, D.Turnbull, T. J.Kessler, D. H.Froula. Spatiotemporal control of laser intensity. Nat. Photonics, 12, 262-268(2018).

    [42] F.Quéré, A.Sainte-Marie, O.Gobert. Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings. Optica, 4, 1298-1304(2017).

    [43] D. W.Forslund, J. M.Kindel, E. L.Lindman. Theory of stimulated scattering processes in laser-irradiated plasmas. Phys. Fluids, 18, 1002(1975).

    [44] P.Mulser, S.Hüller, A. M.Rubenchik. Nonstationary stimulated Brillouin backscattering. Phys. Fluids B, 3, 3339(1991).

    [45] I. D.Carr, D. C.Hanna. Performance of a Nd:YAG oscillator/ampflifier with phase-conjugation via stimulated Brillouin scattering. Appl. Phys. B: Lasers Opt., 36, 83-92(1985).

    [46] H. J.Eichler, H.Meng. Nd:YAG laser with a phase-conjugating mirror based on stimulated Brillouin scattering in SF6 gas. Opt. Lett., 16, 569-571(1991).

    [47] V. A.Gorbunov, V. R.Startsev, V. F.Petrov, S. B.Paperny?. Time compression of pulses in the course of stimulated Brillouin scattering in gases. Sov. J. Quantum Electron., 13, 900(1983).

    [48] F.Gyger, L.Thévenaz, F.Yang. Intense Brillouin amplification in gas using hollow-core waveguides. Nat. Photonics, 14, 700-708(2020).

    [49] V.Vlad, A.Mocofanescu, V.Babin, M.Damzen. Stimulated Brillouin Scattering: Fundamentals and Applications(2003).

    [50] B.Wolff, D.Feldmann, H.Rottke, K. H.Welge. Multiphoton-ionization of hydrogen atoms in intense laser fields. Z. Phys. D: At., Mol. Clusters, 10, 35-43(1988).

    [51] Y.Wu, Z.Nie, M.Sinclair, K. A.Marsh, C.Zhang, C.-K.Huang, C.Joshi. Ionization induced plasma grating and its applications in strong-field ionization measurements. Plasma Phys. Controlled Fusion, 63, 095011(2021).

    [52] A. S.Pirozhkov, T. Z.Esirkepov, N. N.Rosanov, M.Kando, S. V.Bulanov. Relativistic mirrors in plasmas. Novel results and perspectives. Phys.-Usp., 56, 429(2013).

    [53] E. A.Khazanov, G. A.Mourou, A. M.Sergeev, V. M.Malkin, N. J.Fisch, B.Le Garrec, Z.Toroker, T.Tajima. Exawatt-zettawatt pulse generation and applications. Opt. Commun., 285, 720-724(2012).

    [54] C.-T.Zhou, M.Grech, C.Riconda, S.Weber, H.Peng. Dynamical aspects of plasma gratings driven by a static ponderomotive potential. Plasma Phys. Controlled Fusion, 62, 115015(2020).

    [55] C.Riconda, H.Peng, S.Weber, M.Grech, J. Q.Su. Nonlinear dynamics of laser-generated ion-plasma gratings: A unified description. Phys. Rev. E, 100, 061201(R)(2019).

    Zhaohui Wu, Yanlei Zuo, Xiaoming Zeng, Zhaoli Li, Zhimeng Zhang, Xiaodong Wang, Bilong Hu, Xiao Wang, Jie Mu, Jingqin Su, Qihua Zhu, Yaping Dai. Laser compression via fast-extending plasma gratings[J]. Matter and Radiation at Extremes, 2022, 7(6): 064402
    Download Citation