• Photonics Research
  • Vol. 10, Issue 11, 2642 (2022)
Zhimin Jing1, Peihang Li1, Cuiping Ma1, Jiaying Wang1, Roberto Caputo2, Alexander O. Govorov3, Arup Neogi1、6、*, Hongxing Xu4, and Zhiming Wang1、5、7、*
Author Affiliations
  • 1Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 2Physics Department, University of Calabria, Rende I-87036, Italy
  • 3Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, USA
  • 4School of Physics and Technology, Center for Nanoscience and Nanotechnology, Wuhan University, Wuhan 430072, China
  • 5Institute for Advanced Study, Chengdu University, Chengdu 610106, China
  • 6e-mail:
  • 7e-mail:
  • show less
    DOI: 10.1364/PRJ.472087 Cite this Article Set citation alerts
    Zhimin Jing, Peihang Li, Cuiping Ma, Jiaying Wang, Roberto Caputo, Alexander O. Govorov, Arup Neogi, Hongxing Xu, Zhiming Wang. Active spatial control of photothermal heating and thermo-actuated convective flow by engineering a plasmonic metasurface with heterodimer lattices[J]. Photonics Research, 2022, 10(11): 2642 Copy Citation Text show less
    References

    [1] Y. Liu, F. Mo, J. Hu, Q. Jiang, X. Wang, Z. Zou, X.-Z. Zhang, D.-W. Pang, X. Liu. Precision photothermal therapy and photoacoustic imaging by in situ activatable thermoplasmonics. Chem. Sci., 12, 10097-10105(2021).

    [2] X. Huang, F. Zha, J. Zou, Y. Li, F. Wang, X. Chen. Photoacoustic imaging-guided synergistic photothermal/radiotherapy using plasmonic Bi/Bi2O3−x nanoparticles. Adv. Funct. Mater., 32, 2113353(2022).

    [3] R. Huschka, A. Barhoumi, Q. Liu, J. A. Roth, L. Ji, N. J. Halas. Gene silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA. ACS Nano, 6, 7681-7691(2012).

    [4] G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick, J. Wang. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano, 14, 5268-5277(2020).

    [5] M. Zhu, Y. Li, F. Chen, X. Zhu, J. Dai, Y. Li, Z. Yang, X. Yan, J. Song, Y. Wang, E. Hitz, W. Luo, M. Lu, B. Yang, L. Hu. Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater., 8, 1701028(2018).

    [6] B. Wang, Z. Jing, M. Zhao, P. Yu, E. Ashalley, P. Li, C. Ma, X. Tong, R. Caputo, A. O. Govorov, H. Xu, Z. M. Wang. Ultraflexible photothermal superhydrophobic coating with multifunctional applications based on plasmonic TiN nanoparticles. Adv. Opt. Mater., 10, 2200168(2022).

    [7] B. Wang, P. Yu, Q. Yang, Z. Jing, W. Wang, P. Li, X. Tong, F. Lin, D. Wang, G. E. Lio, R. Caputo, O. Ávalos-Ovando, A. O. Govorov, H. Xu, Z. M. Wang. Upcycling of biomass waste into photothermal superhydrophobic coating for efficient anti-icing and deicing. Mater. Today Phys., 24, 100683(2022).

    [8] X. Zhao, Y. Shi, T. Pan, D. Lu, J. Xiong, B. Li, H. Xin. In situ single-cell surgery and intracellular organelle manipulation via thermoplasmonics combined optical trapping. Nano Lett., 22, 402-410(2022).

    [9] L. Shao, M. Käll. Light-driven rotation of plasmonic nanomotors. Adv. Funct. Mater., 28, 1706272(2018).

    [10] Y. Chen, W. Du, Q. Zhang, O. Ávalos-Ovando, J. Wu, Q.-H. Xu, N. Liu, H. Okamoto, A. O. Govorov, Q. Xiong, C.-W. Qiu. Multidimensional nanoscopic chiroptics. Nat. Rev. Phys., 4, 113-124(2022).

    [11] O. Ávalos-Ovando, E. Y. Santiago, A. Movsesyan, X.-T. Kong, P. Yu, L. V. Besteiro, L. K. Khorashad, H. Okamoto, J. M. Slocik, M. A. Correa-Duarte, M. Comesaña-Hermo, T. Liedl, Z. Wang, G. Markovich, S. Burger, A. O. Govorov. Chiral bioinspired plasmonics: a paradigm shift for optical activity and photochemistry. ACS Photon., 9, 2219-2236(2022).

    [12] A. W. Powell, A. Stavrinadis, I. de Miguel, G. Konstantatos, R. Quidant. White and brightly colored 3D printing based on resonant photothermal sensitizers. Nano Lett., 18, 6660-6664(2018).

    [13] C. Ma, P. Yu, W. Wang, Y. Zhu, F. Lin, J. Wang, Z. Jing, X.-T. Kong, P. Li, A. O. Govorov, D. Liu, H. Xu, Z. Wang. Chiral optofluidics with a plasmonic metasurface using the photothermal effect. ACS Nano, 15, 16357-16367(2021).

    [14] J. S. Donner, G. Baffou, D. McCloskey, R. Quidant. Plasmon-assisted optofluidics. ACS Nano, 5, 5457-5462(2011).

    [15] F. Winterer, C. M. Maier, C. Pernpeintner, T. Lohmüller. Optofluidic transport and manipulation of plasmonic nanoparticles by thermocapillary convection. Soft Matter, 14, 628-634(2018).

    [16] S. Duhr, D. Braun. Optothermal molecule trapping by opposing fluid flow with thermophoretic drift. Phys. Rev. Lett., 97, 038103(2006).

    [17] A. P. Bregulla, A. Würger, K. Günther, M. Mertig, F. Cichos. Thermo-osmotic flow in thin films. Phys. Rev. Lett., 116, 188303(2016).

    [18] L. Lin, P. S. Kollipara, A. Kotnala, T. Jiang, Y. Liu, X. Peng, B. A. Korgel, Y. Zheng. Opto-thermoelectric pulling of light-absorbing particles. Light Sci. Appl., 9, 34(2020).

    [19] P. Liu, S. Ye, F. Ye, K. Chen, M. Yang. Constraint dependence of active depletion forces on passive particles. Phys. Rev. Lett., 124, 158001(2020).

    [20] O. A. Yeshchenko, V. V. Kozachenko, A. V. Tomchuk, M. Haftel, R. J. Knize, A. O. Pinchuk. Plasmonic metasurfaces with tunable gap and collective surface plasmon resonance modes. J. Phys. Chem. C, 123, 13057-13062(2019).

    [21] K. Martens, F. Binkowski, L. Nguyen, L. Hu, A. O. Govorov, S. Burger, T. Liedl. Long- and short-ranged chiral interactions in DNA-assembled plasmonic chains. Nat. Commun., 12, 2025(2021).

    [22] A. Ferraro, G. E. Lio, A. Hmina, G. Palermo, J. M. Djouda, T. Maurer, R. Caputo. Tailoring of plasmonic functionalized metastructures to enhance local heating release. Nanophotonics, 10, 3907-3916(2021).

    [23] E. Ashalley, C.-P. Ma, Y.-S. Zhu, H.-X. Xu, P. Yu, Z.-M. Wang. Recent progress in chiral absorptive metamaterials. J. Electron Sci. Technol., 19, 100098(2021).

    [24] N. H. Tu, K. Yoshioka, S. Sasaki, M. Takamura, K. Muraki, N. Kumada. Active spatial control of terahertz plasmons in graphene. Commun. Mater., 1, 7(2020).

    [25] Y. Wang, D. Wei, P. Sohr, J. M. O. Zide, S. Law. Extending the tunable plasma wavelength in III–V semiconductors from the mid-infrared to the short-wave infrared by embedding self-assembled ErAs nanostructures in GaAs. Adv. Opt. Mater., 8, 1900937(2020).

    [26] V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, T. J. Huang. Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals. Adv. Mater., 20, 3528-3532(2008).

    [27] S. Rubin, Y. Fainman. Nonlinear, tunable, and active optical metasurface with liquid film. Adv. Photon., 1, 066003(2019).

    [28] X. Miao, L. Y. Lin. New opto-plasmonic tweezers for manipulation and rotation of biological cells-design and fabrication. International Conference of the IEEE Engineering in Medicine and Biology Society, 4318-4321(2006).

    [29] Y. Zhang, W. Shi, Z. Shen, Z. Man, C. Min, J. Shen, S. Zhu, H. P. Urbach, X. Yuan. A plasmonic spanner for metal particle manipulation. Sci. Rep., 5, 15446(2015).

    [30] X. Wang, Y. Zhang, Y. Dai, C. Min, X. Yuan. Enhancing plasmonic trapping with a perfect radially polarized beam. Photon. Res., 6, 847-852(2018).

    [31] Z. Li, S. Butun, K. Aydin. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. ACS Nano, 8, 8242-8248(2014).

    [32] M. S. Bin-Alam, O. Reshef, Y. Mamchur, M. Z. Alam, G. Carlow, J. Upham, B. T. Sullivan, J.-M. Ménard, M. J. Huttunen, R. W. Boyd, K. Dolgaleva. Ultra-high-Q resonances in plasmonic metasurfaces. Nat. Commun., 12, 974(2021).

    [33] A. K. Boddeti, J. Guan, T. Sentz, X. Juarez, W. Newman, C. Cortes, T. W. Odom, Z. Jacob. Long-range dipole–dipole interactions in a plasmonic lattice. Nano Lett., 22, 22-28(2022).

    [34] Y. Lin, D. Wang, J. Hu, J. Liu, W. Wang, J. Guan, R. D. Schaller, T. W. Odom. Engineering symmetry-breaking nanocrescent arrays for nanolasing. Adv. Funct. Mater., 29, 1904157(2019).

    [35] B. B. Rajeeva, L. Lin, Y. Zheng. Design and applications of lattice plasmon resonances. Nano Res., 11, 4423-4440(2018).

    [36] V. G. Kravets, A. V. Kabashin, W. L. Barnes, A. N. Grigorenko. Plasmonic surface lattice resonances: a review of properties and applications. Chem. Rev., 118, 5912-5951(2018).

    [37] X. Yang, G. Xiao, Y. Lu, G. Li. Narrow plasmonic surface lattice resonances with preference to asymmetric dielectric environment. Opt. Express, 27, 25384-25394(2019).

    [38] L. Lin, Y. Zheng. Engineering of parallel plasmonic–photonic interactions for on-chip refractive index sensors. Nanoscale, 7, 12205-12214(2015).

    [39] Z. Jing, P. Yu, A. Movsesyan, C. Ma, P. Li, Y. Zhu, A. O. Govorov, A. Neogi, Z. Wang. Manipulation of fluid convection by surface lattice resonance. Adv. Opt. Mater., 10, 2201066(2022).

    [40] B. D. Thackray, V. G. Kravets, F. Schedin, G. Auton, P. A. Thomas, A. N. Grigorenko. Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments. ACS Photon., 1, 1116-1126(2014).

    [41] L. Yu, Y. Liang, H. Gao, K. Kuang, Q. Wang, W. Peng. Multi-resonant absorptions in asymmetric step-shaped plasmonic metamaterials for versatile sensing application scenarios. Opt. Express, 30, 2006-2017(2022).

    [42] H. Zhang, Z. Liu, X. Kang, J. Guo, W. Ma, S. Cheng. Asymmetric AgPd–AuNR heterostructure with enhanced photothermal performance and SERS activity. Nanoscale, 8, 2242-2248(2016).

    [43] S.-C. Lin, C.-S. Hsu, S.-Y. Chiu, T.-Y. Liao, H. M. Chen. Edgeless Ag–Pt bimetallic nanocages: in situ monitor plasmon-induced suppression of hydrogen peroxide formation. J. Am. Chem. Soc., 139, 2224-2233(2017).

    [44] E. A. D. R. Hans, M. D. Regulacio. Dual plasmonic Au−Cu2−xS nanocomposites: design strategies and photothermal properties. Chem. A Eur. J., 27, 11030-11040(2021).

    [45] D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, T. W. Odom. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices. Nat. Nanotech., 12, 889-894(2017).

    [46] M. Charconnet, C. Kuttner, J. Plou, J. L. García-Pomar, A. Mihi, L. M. Liz-Marzán, A. Seifert. Mechanically tunable lattice-plasmon resonances by templated self-assembled superlattices for multi-wavelength surface-enhanced Raman spectroscopy. Small Methods, 5, 2100453(2021).

    [47] P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, A. Boltasseva. Searching for better plasmonic materials. Laser Photon. Rev., 4, 795-808(2010).

    [48] A. Kotnala, P. S. Kollipara, J. Li, Y. Zheng. Overcoming diffusion-limited trapping in nanoaperture tweezers using opto-thermal-induced flow. Nano Lett., 20, 768-779(2020).

    [49] G. Baffou. Thermoplasmonics: Heating Metal Nanoparticles Using Light(2017).

    [50] A. O. Govorov, H. H. Richardson. Generating heat with metal nanoparticles. Nano Today, 2, 30-38(2007).

    [51] G. Baffou, R. Quidant. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat: thermoplasmonics. Laser Photon. Rev., 7, 171-187(2013).

    [52] C. R. Doering, J. D. Gibbon. Applied Analysis of the Navier-Stokes Equations(1995).

    [53] P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379(1972).

    [54] A. Movsesyan, L. V. Besteiro, X. Kong, Z. Wang, A. O. Govorov. Engineering strongly chiral plasmonic lattices with achiral unit cells for sensing and photodetection. Adv. Opt. Mater., 10, 2101943(2021).

    [55] L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, N. J. Halas. Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano, 4, 819-832(2010).

    [56] X.-T. Kong, L. K. Khorashad, Z. Wang, A. O. Govorov. Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers. Nano Lett., 18, 2001-2008(2018).

    [57] M. L. Brongersma, N. J. Halas, P. Nordlander. Plasmon-induced hot carrier science and technology. Nat. Nanotech., 10, 25-34(2015).

    [58] B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, K. C. Toussaint. Understanding and controlling plasmon-induced convection. Nat. Commun., 5, 3173(2014).

    [59] H. Ozbek, S. L. Phillips. Thermal conductivity of aqueous NaCl solutions from 20°C to 330°C(1979).

    [60] X. Miao, B. K. Wilson, L. Y. Lin. Localized surface plasmon assisted microfluidic mixing. Appl. Phys. Lett., 92, 124108(2008).

    [61] K. Namura, K. Nakajima, K. Kimura, M. Suzuki. Sheathless particle focusing in a microfluidic chamber by using the thermoplasmonic Marangoni effect. Appl. Phys. Lett., 108, 071603(2016).

    [62] K. Namura, K. Nakajima, K. Kimura, M. Suzuki. Photothermally controlled Marangoni flow around a micro bubble. Appl. Phys. Lett., 106, 043101(2015).

    Zhimin Jing, Peihang Li, Cuiping Ma, Jiaying Wang, Roberto Caputo, Alexander O. Govorov, Arup Neogi, Hongxing Xu, Zhiming Wang. Active spatial control of photothermal heating and thermo-actuated convective flow by engineering a plasmonic metasurface with heterodimer lattices[J]. Photonics Research, 2022, 10(11): 2642
    Download Citation