• Acta Optica Sinica
  • Vol. 39, Issue 11, 1123001 (2019)
Shuxin Wang1, Tingting Lang2, Guangyi Song1, and Jianjun He1、*
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentation, Center for Integrated Optoelectronics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • 2College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
  • show less
    DOI: 10.3788/AOS201939.1123001 Cite this Article Set citation alerts
    Shuxin Wang, Tingting Lang, Guangyi Song, Jianjun He. SiON-Based Cyclic Arrayed Waveguide Grating Routers with Improved Loss Uniformity[J]. Acta Optica Sinica, 2019, 39(11): 1123001 Copy Citation Text show less
    References

    [1] Smit M K, van Dam C. PHASAR-based WDM-devices: principles, design and applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2, 236-250(1996). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=577370

    [2] Nicholes S, Mashanovitch M. Jevremovi c' B, et al. 8-channel InP monolithic tunable optical router for packet forwarding. [C]∥Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, March 6-10, 2011, Los Angeles, California, United States. Washington, D.C.: OSA, OThD1(2011).

    [3] Dragone C. An N×N optical multiplexer using a planar arrangement of two star couplers[J]. IEEE Photonics Technology Letters, 3, 812-815(1991). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=84502

    [4] Lang T T, Lin X F, He J J. Fabrication of silica-on-silicon arrayed waveguide gratings[J]. Acta Optica Sinica, 31, 0213003(2011).

    [5] Nicholes S C, Masanovic M L, Jevremovic B et al. An 8×8 InP monolithic tunable optical router (MOTOR) packet forwarding chip[J]. Journal of Lightwave Technology, 28, 641-650(2010). http://ieeexplore.ieee.org/document/5204280

    [6] Cheung S, Su T H, Okamoto K et al. Ultra-compact silicon photonic 512×512 25 GHz arrayed waveguide grating router[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 310-316(2014). http://ieeexplore.ieee.org/document/6691912

    [7] Takenobu S, Kuwana Y, Takayama K et al. All-polymer 8×8 AWG wavelength router using ultra low loss polymer optical waveguide material (CYTOP TM). [C]∥Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, February 24-28, 2008, San Diego, CA, USA. Wshington, D.C.: OSA, JWA32(2008).

    [8] Min Y H, Lee M H, Ju J J et al. Polymeric 16×16 arrayed-waveguide grating router using fluorinated polyethers operating around 1550 nm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 7, 806-811(2001). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=979341

    [9] Wörhoff K, Driessen A, Lambeck P V et al. Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics[J]. Sensors and Actuators A: Physical, 74, 9-12(1999). http://www.sciencedirect.com/science/article/pii/S0924424798003252

    [10] Chuang R W, Liao Z L, Chang C K. Integrated optical beam splitters employing symmetric mode mixing in SiO2/SiON/SiO2 multimode interference waveguides[J]. Japanese Journal of Applied Physics, 46, 2440-2444(2007). http://adsabs.harvard.edu/abs/2007JaJAP..46.2440C

    [11] Gorecki C. Optimization of plasma-deposited silicon oxinitride films for optical channel waveguides[J]. Optics and Lasers in Engineering, 33, 15-20(2000). http://www.sciencedirect.com/science/article/pii/S0143816600000245

    [12] Okamoto K, Hasegawa T, Ishida O et al. 32×32 arrayed-waveguide grating multiplexer with uniform loss and cyclic frequency characteristics[J]. Electronics Letters, 33, 1865-1866(1997). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=630324

    [13] Kamei S, Ishii M, Itoh M et al. 64×64-channel uniform-loss and cyclic-frequency arrayed-waveguide grating router module. [C]∥2002 28TH European Conference on Optical Communication, September 8-12, 2002, Copenhagen, Denmark. New York: IEEE(2002).

    [14] Sakamaki Y, Kamei S, Hashimoto T et al. Loss uniformity improvement of arrayed-waveguide grating with mode-field converters designed by wavefront matching method[J]. Journal of Lightwave Technology, 27, 5710-5715(2009). http://www.opticsinfobase.org/JLT/abstract.cfm?uri=JLT-27-24-5710

    [15] Sakamaki Y, Saida T, Tamura M et al. Loss reduction of arrayed waveguide grating with mode converters designed by wavefront matching method[J]. Electronics Letters, 42, 1300-1301(2006). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4015929

    [16] Xia X, Chen Y, Zou J et al. Loss uniformity improvement for cyclic arrayed waveguide grating based on silicon nanowire waveguides. [C]∥2015 Optoelectronics Global Conference (OGC), August 29-31, 2015, Shenzhen, China. New York: IEEE, 15619249(2015).

    [17] Jin W, Zou J, Lang T T et al. Design of cyclic arrayed waveguide grating with distributed waveguide directions for uniform loss. [C]∥2013 12th International Conference on Optical Communications and Networks (ICOCN), July 26-28, 2013, Chengdu, China. New York: IEEE, 13824749(2013).

    [18] Chen J C, Dragone C. Waveguide grating routers with greater channel uniformity[J]. Electronics Letters, 33, 1951-1952(1997). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=640459

    [19] Sheng Z, Dai D X, He S L. Improve channel uniformity of an Si-nanowire AWG demultiplexer by using dual-tapered auxiliary waveguides[J]. Journal of Lightwave Technology, 25, 3001-3007(2007). http://ieeexplore.ieee.org/document/4346633/

    [20] Song G Y, Wang S X, Zou J et al. Silicon-based cyclic arrayed waveguide grating routers with improved loss uniformity[J]. Optics Communications, 427, 628-634(2018).

    [21] Takiguchi K, Okamoto K, Sugita A. Arrayed-waveguide grating with uniform loss properties over the entire range of wavelength channels[J]. Optics Letters, 31, 459-461(2006). http://www.ncbi.nlm.nih.gov/pubmed/16496886

    Shuxin Wang, Tingting Lang, Guangyi Song, Jianjun He. SiON-Based Cyclic Arrayed Waveguide Grating Routers with Improved Loss Uniformity[J]. Acta Optica Sinica, 2019, 39(11): 1123001
    Download Citation