• Journal of Innovative Optical Health Sciences
  • Vol. 14, Issue 4, 2141005 (2021)
Yang Liu1、2, Xin Li1、2, Jie Cheng1、2, Na Zhou1、2, Lingqian Zhang1, Haiyang Mao1、2、3、*, and Chengjun Huang1、2
Author Affiliations
  • 1Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China
  • 2University of Chinese Academy of Sciences Beijing 100049, P. R. China
  • 3Wuxi Internet of Things Innovation Center Co. Ltd. Advanced Sensing Department, Wuxi 214001, P. R. China
  • show less
    DOI: 10.1142/s1793545821410054 Cite this Article
    Yang Liu, Xin Li, Jie Cheng, Na Zhou, Lingqian Zhang, Haiyang Mao, Chengjun Huang. SERS devices with "hedgehog-like" nanosphere arrays for detection of trace pesticides[J]. Journal of Innovative Optical Health Sciences, 2021, 14(4): 2141005 Copy Citation Text show less
    References

    [1] S. Savary, A. Ficke, J.-N. Aubertot, C. Hollier, "Crop losses due to diseases and their implications for global food production losses and food security," Food Security 4, 519–537 (2012).

    [2] H. Pu, Z. Huang, F. Xu, D. W. Sun, "Twodimensional self-assembled Au–Ag core–shell nanorods nanoarray for sensitive detection of thiram in apple using surface-enhanced Raman spectroscopy," Food Chem. 343, 128548 (2021).

    [3] B. Hu, D. W. Sun, H. Pu, Q. Wei, "A dynamically optical and highly stable pNIPAM @ Au NRs nanohybrid substrate for sensitive SERS detection of malachite green in fish fillet," Talanta 218, 121188 (2020).

    [4] B. Hu, D. W. Sun, H. Pu, Q. Wei, "Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with selfmodeling mixture analysis method," Talanta 217, 120998 (2020).

    [5] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chem. Phys. Lett. 26(2), 163–166 (1974).

    [6] Z. Li, Z. Du, X. He, "Template-assisted electrodeposition of urchin-like Ag-nanoplate-assembled nanorod arrays and their structurally enhanced SERS performance," J. Electrochem. Soc. 164(13), D895–D900 (2017).

    [7] J. Prinz, C. Heck, L. Ellerik, V. Merk, I. Bald, "DNA origami based Au–Ag–core–shell nanoparticle dimers with single-molecule SERS sensitivity," Nanoscale 8(10), 5612–5620 (2016).

    [8] Q. Tao, S. Li, C. Ma, K. Liu, Q. Y. Zhang, "A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays," Dalton Trans. 44(7), 3447–3453 (2015).

    [9] B. Zhou, J. Shen, P. Li, M. Ge, D. Lin, Y. Li, J. Lu, L. Yang, "Gold nanoparticle-decorated silver needle for surface-enhanced Raman spectroscopy screening of residual malachite green in aquaculture products," ACS Appl. Nano Mater. 2(5), 2752–2757 (2019).

    [10] J. Krajczewski, A. Kudelski, "Shell-isolated nanoparticle- enhanced Raman spectroscopy," Front. Chem. 7, 410 (2019).

    [11] A. K. Pal, S. Pagal, K. Prashanth, G. K. Chandra, S. Umapathy, D. B. Mohan, "Ag/ZnO/Au 3D hybrid structured reusable SERS substrate as highly sensitive platform for DNA detection," Sens. Actuators B Chem. 279, 157–169 (2019).

    [12] X. Gao, J. Boryczka, P. Zheng, S. Kasani, F. Yang, E. B. Engler-Chiurazzi, J. W. Simpkins, J. G. Wigginton, N. Wu, "A "hot Spot"-Enhanced paper lateral flow assay for ultrasensitive detection of traumatic brain injury biomarker S-100 in blood plasma," Biosens. Bioelectron. 177, 112967 (2021).

    [13] L. Ouyang, Y. Hu, L. Zhu, G. J. Cheng, J. Irudayaraj, "A reusable laser wrapped graphene-Ag array based SERS sensor for trace detection of genomic DNA methylation," Biosens. Bioelectron. 92, 755–762 (2017).

    [14] L. Petti, R. Capasso, M. Rippa, M. Pannico, P. La Manna, G. Peluso, A. Calarco, E. Bobeico, P. Musto, "A plasmonic nanostructure fabricated by electron beam lithography as a sensitive and highly homogeneous SERS substrate for bio-sensing applications," Vib. Spectrosc. 82, 22–30 (2016).

    [15] G. Barbillon, V. E. Sandana, C. Humbert, B. Belier, D. J. Rogers, F. H. Teherani, P. Bove, R. McClintock, M. Razeghi, "Study of Au coated ZnO nanoarrays for surface enhanced Raman scattering chemical sensing," J. Mater. Chem. C. 5(14), 3528– 3535 (2017).

    [16] M. Fan, G. F. Andrade, A. G. Brolo, "A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry," Anal. Chim. Acta. 693(1–2), 7–25 (2011).

    [17] L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, C. A. Mirkin, "Designing, fabricating, and imaging Raman hot spots," Proc. Natl. Acad. Sci. U. S. A. 103(36), 13300–13303 (2006).

    [18] H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, S. H. Oh, "Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing," Adv. Mater. 25(19), 2678–2685 (2013).

    [19] H. Mao, W. Wu, D. She, G. Sun, P. Lv, J. Xu, "Microfluidic surface-enhanced Raman scattering sensors based on nanopillar forests realized by an oxygen-plasma-stripping-of-photoresist technique," Small 10(1), 127–134 (2014).

    [20] J. Huang, Z. He, Y. Liu, L. Liu, X. He, T. Wang, Y. Yi, C. Xie, K. Du, "Large surface-enhanced Raman scattering from nanoporous gold film over nanosphere," Appl. Surf. Sci. 478, 793–801 (2019).

    [21] A. E. Cetin, C. Yilmaz, B. C. Galarreta, G. Yilmaz, H. Altug, A. Busnaina, "Fabrication of sub-10-nm plasmonic gaps for ultra-sensitive Raman spectroscopy," Plasmonics 15(4), 1165–1171 (2020).

    [22] Z. Huang, G. Meng, Q. Huang, Y. Yang, C. Zhu, C. Tang, "Improved SERS performance from Au nanopillar arrays by abridging the pillar tip spacing by Ag sputtering," Adv. Mater. 22(37), 4136–4139 (2010).

    [23] G. Liu, X. Li, W. Wang, F. Zhou, G. Duan, Y. Li, Z. Xu, W. Cai, "Gold binary-structured arrays based on monolayer colloidal crystals and their optical properties," Small 10(12), 2374–2381 (2014).

    [24] W. Yue, T. Gong, X. Long, V. Kravets, P. Gao, M. Pu, C. Wang, "Sensitive and reproducible surfaceenhanced Raman spectroscopy (SERS) with arrays of dimer-nanopillars," Sens. Actuators B Chem. 322, 128563 (2020).

    [25] S. Bai, D. Serien, A. Hu, K. Sugioka, "3D micro- fluidic surface-enhanced Raman spectroscopy (SERS) chips fabricated by all-femtosecond-laserprocessing for real-time sensing of toxic substances," Adv. Funct. Mater. 28(23), 1706262 (2018).

    [26] K. Sivashanmugan, J. D. Liao, J. W. You, C. L. Wu, "Focused-ion-beam-fabricated Au/Ag multilayered nanorod array as SERS-active substrate for virus strain detection," Sens. Actuators B Chem. 181, 361–367 (2013).

    [27] S. Li, N. Zhang, N. Zhang, D. Lin, X. Hu, X. Yang, "Three-dimensional ordered Ag/ZnO/Si hierarchical nanoflower arrays for spatially uniform and ultrasensitive SERS detection," Sens. Actuators B: Chem. 321, 128519 (2020).

    [28] X. Li, Y. Zhang, M. Li, Y. Zhao, L. Zhang, C. Huang, "Convex-meniscus-assisted self-assembly at the air/water interface to prepare a wafer-scale colloidal monolayer without overlap," Langmuir 37(1), 249–256 (2021).

    [29] H. Zhang, D. Liu, L. Hang, X. Li, G. Liu, W. Cai, Y. Li, "Effective SERS-active substrates composed of hierarchical micro/nanostructured arrays based on reactive ion etching and colloidal masks," Nanotechnology 27(39), 395304 (2016).

    [30] Z. Li, G. Meng, Q. Huang, X. Hu, X. He, H. Tang, Z. Wang, F. Li, "Ag nanoparticle-grafted PANnanohump array films with 3D high-density hot spots as flexible and reliable SERS substrates," Small 11(40), 5452–5459 (2015).

    [31] R. Li, B. Gui, H. Mao, Y. Yang, D. Chen, J. Xiong, "Self-concentrated SERS-active droplet sensor with three-dimensional hot spots for highly sensitive molecular detection in complex liquid environments," ACS Sens. 5(11), 3420–3431 (2020).

    [32] J. Chen, Y. Huang, P. Kannan, L. Zhang, Z. Lin, J. Zhang, T. Chen, L. Guo, "Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables," Anal. Chem. 88(4), 2149–2155 (2016).

    [33] X. Zheng, Y. Chen, Y. Chen, N. Bi, H. Qi, M. Qin, D. Song, H. Zhang, Y. Tian, "High performance Au/Ag core/shell bipyramids for determination of thiram based on surface-enhanced Raman scattering," J. Raman Spectrosc. 43(10), 1374–1380 (2012).

    Yang Liu, Xin Li, Jie Cheng, Na Zhou, Lingqian Zhang, Haiyang Mao, Chengjun Huang. SERS devices with "hedgehog-like" nanosphere arrays for detection of trace pesticides[J]. Journal of Innovative Optical Health Sciences, 2021, 14(4): 2141005
    Download Citation