• Infrared and Laser Engineering
  • Vol. 51, Issue 7, 20220288 (2022)
Chenhui Yu1, Niming Shen1, Yong Zhou2、*, Tiantian Cheng1, Jiayi Qin1, and Man Luo1、2、*
Author Affiliations
  • 1Jiangsu Key Laboratory of ASIC Design, School of Information Science and Technology, Nantong University, Nantong 226019, China
  • 2State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • show less
    DOI: 10.3788/IRLA20220288 Cite this Article
    Chenhui Yu, Niming Shen, Yong Zhou, Tiantian Cheng, Jiayi Qin, Man Luo. Research progress on ferroelectric localized field-enhanced low-dimensional material-based photodetectors (invited)[J]. Infrared and Laser Engineering, 2022, 51(7): 20220288 Copy Citation Text show less
    Ferroelectric localized field-enhanced nanowire photodetectors. (a) Device structure schematic of ferroelectric side-gated single InP NW; (b) Working principle diagram of the device in the negative polarization state[15]; (c) Device structure schematic of ferroelectric top-gated single InAs NW; (d) Output characteristic curves of the device for 3.5 μm exciting light at different power densities[18]
    Fig. 1. Ferroelectric localized field-enhanced nanowire photodetectors. (a) Device structure schematic of ferroelectric side-gated single InP NW; (b) Working principle diagram of the device in the negative polarization state[15]; (c) Device structure schematic of ferroelectric top-gated single InAs NW; (d) Output characteristic curves of the device for 3.5 μm exciting light at different power densities[18]
    Ferroelectric localized field-enhanced MoS2 photodetector. (a) Schematic diagram of MoS2 top-gate device structure tuned by ferroelectric material; (b) Photoresponsivity under different wavelength[14]; (c) Schematic diagram of structure and test circuit of MoS2 negative capacitance field effect transistor tuned by ferroelectric material; (d) Transfer characteristic curves under different incident light powers[23]
    Fig. 2. Ferroelectric localized field-enhanced MoS2 photodetector. (a) Schematic diagram of MoS2 top-gate device structure tuned by ferroelectric material; (b) Photoresponsivity under different wavelength[14]; (c) Schematic diagram of structure and test circuit of MoS2 negative capacitance field effect transistor tuned by ferroelectric material; (d) Transfer characteristic curves under different incident light powers[23]
    Ferroelectric localized field-enhanced two-dimensional material photodetectors. (a) Structure schematic of ferroelectric material tuned InSe phototransistor[26]; (b) Structure schematic of ferroelectric material tuned InSb phototransistor[28]
    Fig. 3. Ferroelectric localized field-enhanced two-dimensional material photodetectors. (a) Structure schematic of ferroelectric material tuned InSe phototransistor[26]; (b) Structure schematic of ferroelectric material tuned InSb phototransistor[28]
    Modulation of two-dimensional material photodetectors by pyroelectric effect of ferroelectric materials. (a) Schematic diagram of graphene pyroelectric bolometer; (b) Working principle diagram of graphene pyroelectric bolometer[29]; (c) P(VDF-TrFE)/MoS2 field effect transistor structure[30]; (d) Structure schematic of Bi2O2Se/PMN-PT ferroelectric field effect transistor[31]
    Fig. 4. Modulation of two-dimensional material photodetectors by pyroelectric effect of ferroelectric materials. (a) Schematic diagram of graphene pyroelectric bolometer; (b) Working principle diagram of graphene pyroelectric bolometer[29]; (c) P(VDF-TrFE)/MoS2 field effect transistor structure[30]; (d) Structure schematic of Bi2O2Se/PMN-PT ferroelectric field effect transistor[31]
    Ferroelectric localized field-enhanced two-dimensional material homojunction devices. (a) Schematic diagram of BiFeO3 ferroelectric tuned WSe2 in-plane pn junction; (b) Output characteristics of the device[32]; (c) Schematic diagram of P(VDF-TrFE) ferroelectric tuned MoTe2 in-plane pn junction; (d) Photocurrent mapping of the device[33]
    Fig. 5. Ferroelectric localized field-enhanced two-dimensional material homojunction devices. (a) Schematic diagram of BiFeO3 ferroelectric tuned WSe2 in-plane pn junction; (b) Output characteristics of the device[32]; (c) Schematic diagram of P(VDF-TrFE) ferroelectric tuned MoTe2 in-plane pn junction; (d) Photocurrent mapping of the device[33]
    Ferroelectric localized field-enhanced two-dimensional van der Waals heterojunction devices[35]. (a) Device structure schematic of ferroelectric tuned GeSe/MoS2 heterojunction; (b)-(d) Schematic diagram of the energy band structure of the heterojunction corresponding to the different ferroelectric polarization states
    Fig. 6. Ferroelectric localized field-enhanced two-dimensional van der Waals heterojunction devices[35]. (a) Device structure schematic of ferroelectric tuned GeSe/MoS2 heterojunction; (b)-(d) Schematic diagram of the energy band structure of the heterojunction corresponding to the different ferroelectric polarization states
    Chenhui Yu, Niming Shen, Yong Zhou, Tiantian Cheng, Jiayi Qin, Man Luo. Research progress on ferroelectric localized field-enhanced low-dimensional material-based photodetectors (invited)[J]. Infrared and Laser Engineering, 2022, 51(7): 20220288
    Download Citation