• Laser & Optoelectronics Progress
  • Vol. 62, Issue 2, 0237001 (2025)
Xinggui Xu1,*, Hong Li1, Bing Ran2, Weihe Ren3, and Junrong Song1
Author Affiliations
  • 1The School of Information, Yunnan University of Finance and Economics, Kunming 650051, Yunnan , China
  • 2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610054, Sichuan , China
  • 3The Institute of Beijing Space Electromechanical Research, Beijing 100039, China
  • show less
    DOI: 10.3788/LOP240707 Cite this Article Set citation alerts
    Xinggui Xu, Hong Li, Bing Ran, Weihe Ren, Junrong Song. Turbulence-Blurred Target Restoration Algorithm with a Nonconvex Regularization Constraint[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0237001 Copy Citation Text show less
    References

    [1] Wu J L, Ke X Z, Feng X R. Measurement of transverse wind speed in atmospheric turbulence by cross-correlation algorithm[J]. Optical Engineering, 61, 066110(2022).

    [2] Ma J Y, Ma Y, Li C. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 45, 153-178(2019).

    [3] Radhakrishnan V M, Keller C U, Doelman N J et al. Estimating non-common path aberrations with an adaptive coronagraph[J]. Astronomy & Astrophysics, 670, A137(2023).

    [4] Liu Y, Chen X, Wang Z F et al. Deep learning for pixel-level image fusion: recent advances and future prospects[J]. Information Fusion, 42, 158-173(2018).

    [5] Luo Y Y, He K J, Xu D et al. Infrared and visible image fusion based on visibility enhancement and norm optimization low-rank representation[J]. Journal of Electronic Imaging, 31, 013032(2022).

    [6] Xu X G, Yang P, Liu Y et al. Geometric distortion correction of long-range imaging containing moving objects[J]. Journal of Optics, 21, 015702(2019).

    [7] Neuner B, Lilledahl S D, Laxton B et al. Digital adaptive optics with interferometric homodyne encoding for mitigating atmospheric turbulence[J]. Optical Engineering, 62, 023104(2023).

    [8] Li H H, Yu L, Zhang L et al. Dark channel constraint and alternated direction multiplier optimization of turbulence degraded image blind restoration[J]. Journal of Northwestern Polytechnical University, 36, 103-109(2018).

    [9] Huang W, Wei Y. Single image dehazing via color balancing and quad-decomposition atmospheric light estimation[J]. Optik, 275, 170573(2023).

    [10] Zhang L H, Zhai Y J, Xu R C et al. End-to-end computational ghost imaging method that suppresses atmospheric turbulence[J]. Applied Optics, 62, 697-705(2023).

    [11] Chen G P, Gao Z S, Wang Q L et al. U-net like deep autoencoders for deblurring atmospheric turbulence[J]. Journal of Electronic Imaging, 28, 053024(2019).

    [12] Li H, Wu X J. Infrared and visible image fusion using latent low-rank representation[EB/OL]. https://arxiv.org/abs/1804.08992

    [13] Su C D, Wu X Q, Guo Y M et al. Atmospheric turbulence degraded image restoration using a modified dilated convolutional network[J]. IET Image Processing, 16, 3507-3517(2022).

    [14] Yong H W, Meng D Y, Zuo W M et al. Robust online matrix factorization for dynamic background subtraction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 1726-1740(2018).

    [15] Anantrasirichai N, Achim A, Kingsbury N G et al. Atmospheric turbulence mitigation using complex wavelet-based fusion[J]. IEEE Transactions on Image Processing, 22, 2398-2408(2013).

    [16] Anantrasirichai N, Zheng R C, Selesnick I et al. Image fusion via sparse regularization with non-convex penalties[J]. Pattern Recognition Letters, 131, 355-360(2020).

    [17] Xu X G, Yang P, Xian H et al. Robust moving objects detection in long-distance imaging through turbulent medium[J]. Infrared Physics & Technology, 100, 87-98(2019).

    [18] Xu X G, Yang R H, Ran B et al. Remote object image enhancement of fusion Retinex and discrete wavelet singular value decomposition[J]. Journal of Applied Optics, 42, 656-663, 754(2021).

    [19] Hua X, Pan C, Shi Y et al. Removing atmospheric turbulence effects via geometric distortion and blur representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 4100113(2022).

    [20] Wang Z Y, Li X P, So H C et al. Robust PCA via non-convex half-quadratic regularization[J]. Signal Processing, 204, 108816(2023).

    [21] Chen Y Y, Xu T T, Zhao X J et al. Asymmetry total variation and framelet regularized nonconvex low-rank tensor completion[J]. Signal Processing, 206, 108901(2023).

    [22] Cao J X, Liu S J, Liu H Q et al. Simultaneous non-convex low rank regularization for fast magnetic resonance spectroscopy reconstruction[J]. Digital Signal Processing, 132, 103795(2023).

    [23] Liu G C, Yan S C. Latent Low-Rank Representation for subspace segmentation and feature extraction[C], 1615-1622(2011).

    [24] Zhu G L, Lv X G, Jiang L et al. Nonconvex regularization for convex image smoothing[J]. Signal Processing, 205, 108862(2023).

    [25] Ma R J, Li S Y, Zhang B et al. Meta PID attention network for flexible and efficient real-world noisy image denoising[J]. IEEE Transactions on Image Processing, 31, 2053-2066(2022).

    [26] Athar S, Wang Z. Degraded reference image quality assessment[J]. IEEE Transactions on Image Processing, 32, 822-837(2023).

    [27] Zhang H J, Sun G, Zhu L M et al. Estimation of optical turbulence intensity near sea surface using ultrasonic anemometer array[J]. Acta Optica Sinica, 43, 0601001(2023).

    [29] Geng D, Zhu W Y, Peng J X et al. Real-time estimation of whole-layer atmospheric optical turbulence with multi-source measurement data[J]. Acta Optica Sinica, 43, 1801003(2023).

    [30] Chen Y X, He Y H, Liu L Y et al. Plasma-based terahertz wave photonics in gas and liquid phases[J]. Photonics Insights, 2, R06(2023).

    Xinggui Xu, Hong Li, Bing Ran, Weihe Ren, Junrong Song. Turbulence-Blurred Target Restoration Algorithm with a Nonconvex Regularization Constraint[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0237001
    Download Citation