• Photonics Research
  • Vol. 8, Issue 11, 1697 (2020)
Xiaotian Feng1, Zhifei Yu1, Bing Chen2, Shuying Chen1, Yuan Wu1, Donghui Fan1, Chun-Hua Yuan1、5、*, L. Q. Chen1、6、*, Z. Y. Ou3, and Weiping Zhang4
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, Quantum Institute for Light and Atoms, Department of Physics, East China Normal University, Shanghai 200062, China
  • 2School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China
  • 3Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
  • 4School of Physics and Astronomy, and Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
  • 5e-mail: chyuan@phy.ecnu.edu.cn
  • 6e-mail: lqchen@phy.ecnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.400708 Cite this Article Set citation alerts
    Xiaotian Feng, Zhifei Yu, Bing Chen, Shuying Chen, Yuan Wu, Donghui Fan, Chun-Hua Yuan, L. Q. Chen, Z. Y. Ou, Weiping Zhang. Reducing the mode-mismatch noises in atom–light interactions via optimization of the temporal waveform[J]. Photonics Research, 2020, 8(11): 1697 Copy Citation Text show less
    References

    [1] H. J. Kimble. The quantum internet. Nature, 453, 1023-1030(2008).

    [2] Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, J.-W. Pan. Experimental demonstration of a BDCZ quantum repeater node. Nature, 454, 1098-1101(2008).

    [3] N. Sangouard, C. Simon, H. De Riedmatten, N. Gisin. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys., 83, 33-80(2011).

    [4] P. Berg, S. Abend, G. Tackmann, C. Schubert, E. Giese, W. Schleich, F. Narducci, W. Ertmer, E. Rasel. Composite-light-pulse technique for high-precision atom interferometry. Phys. Rev. Lett., 114, 063002(2015).

    [5] G. Bao, S. Wu, S. Liu, W. Huang, Z. Li, L. Chen, C.-H. Yuan, W. Zhang. Enhancement of the signal-to-noise ratio of an atomic magnetometer by 10  dB. Phys. Rev. Appl., 11, 054075(2019).

    [6] J. Geremia, J. K. Stockton, H. Mabuchi. Suppression of spin projection noise in broadband atomic magnetometry. Phys. Rev. Lett., 94, 203002(2005).

    [7] M. Koschorreck, M. Napolitano, B. Dubost, M. Mitchell. Sub-projection-noise sensitivity in broadband atomic magnetometry. Phys. Rev. Lett., 104, 093602(2010).

    [8] J. Appel, E. Figueroa, D. Korystov, M. Lobino, A. Lvovsky. Quantum memory for squeezed light. Phys. Rev. Lett., 100, 093602(2008).

    [9] M. Lobino, C. Kupchak, E. Figueroa, A. Lvovsky. Memory for light as a quantum process. Phys. Rev. Lett., 102, 203601(2009).

    [10] F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Ou, W. Zhang. Quantum metrology with parametric amplifier-based photon correlation interferometers. Nat. Commun., 5, 3049(2014).

    [11] C. M. Caves. Quantum-mechanical noise in an interferometer. Phys. Rev. D, 23, 1693-1708(1981).

    [12] Y. Ma, H. Miao, B. H. Pang, M. Evans, C. Zhao, J. Harms, R. Schnabel, Y. Chen. Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement. Nat. Phys., 13, 776-780(2017).

    [13] F. Wolfgramm, A. Cere, F. A. Beduini, A. Predojević, M. Koschorreck, M. W. Mitchell. Squeezed-light optical magnetometry. Phys. Rev. Lett., 105, 053601(2010).

    [14] W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. Balabas, E. S. Polzik. Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett., 104, 133601(2010).

    [15] W. Du, J. Jia, J. Chen, Z. Ou, W. Zhang. Absolute sensitivity of phase measurement in an SU(1, 1) type interferometer. Opt. Lett., 43, 1051-1054(2018).

    [16] W. Wasilewski, T. Fernholz, K. Jensen, L. Madsen, H. Krauter, C. Muschik, E. S. Polzik. Generation of two-mode squeezed and entangled light in a single temporal and spatial mode. Opt. Express, 17, 14444-14457(2009).

    [17] B. Chen, C. Qiu, S. Chen, J. Guo, L. Chen, Z. Ou, W. Zhang. Atom-light hybrid interferometer. Phys. Rev. Lett., 115, 043602(2015).

    [18] L.-M. Duan, M. Lukin, J. I. Cirac, P. Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414, 413-418(2001).

    [19] K. Reim, J. Nunn, V. Lorenz, B. Sussman, K. Lee, N. Langford, D. Jaksch, I. Walmsley. Towards high-speed optical quantum memories. Nat. Photonics, 4, 218-221(2010).

    [20] T. Gustavson, P. Bouyer, M. Kasevich. Precision rotation measurements with an atom interferometer gyroscope. Phys. Rev. Lett., 78, 2046-2049(1997).

    [21] L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, M. Zhan. Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer. Phys. Rev. Lett., 115, 013004(2015).

    [22] J. Guo, L. Chen, P. Yang, Z. Li, Y. Wu, X. Feng, C.-H. Yuan, Z. Ou, W. Zhang. 88% conversion efficiency with an atomic spin wave mediated mode selection. Opt. Lett., 42, 1752-1755(2017).

    [23] X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, J.-W. Pan. Efficient and long-lived quantum memory with cold atoms inside a ring cavity. Nat. Phys., 8, 517-521(2012).

    [24] I. Usmani, M. Afzelius, H. De Riedmatten, N. Gisin. Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. Nat. Commun., 1, 12(2010).

    [25] M. Bonarota, J. Le Gouët, T. Chaneliere. Highly multimode storage in a crystal. New J. Phys., 13, 013013(2011).

    [26] X. Guo, N. Liu, X. Li, Z. Ou. Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous variable entanglement generation. Opt. Express, 23, 29369-29383(2015).

    [27] J. Li, Y. Liu, N. Huo, L. Cui, C. Feng, Z. Ou, X. Li. Pulsed entanglement measured by parametric amplifier assisted homodyne detection. Opt. Express, 27, 30552-30562(2019).

    [28] B. Brecht, D. V. Reddy, C. Silberhorn, M. Raymer. Photon temporal modes: a complete framework for quantum information science. Phys. Rev. X, 5, 041017(2015).

    [29] K. Hammerer, A. S. Sørensen, E. S. Polzik. Quantum interface between light and atomic ensembles. Rev. Mod. Phys., 82, 1041(2010).

    [30] M. Raymer, Z. Li, I. Walmsley. Temporal quantum fluctuations in stimulated Raman scattering: coherent-modes description. Phys. Rev. Lett., 63, 1586-1589(1989).

    [31] M. Raymer, I. Walmsley, J. Mostowski, B. Sobolewska. Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering. Phys. Rev. A, 32, 332-344(1985).

    [32] N. Huo, Y. Liu, J. Li, L. Cui, X. Chen, R. Palivela, T. Xie, X. Li, Z. Ou. Direct temporal mode measurement for the characterization of temporally multiplexed high dimensional quantum entanglement in continuous variables. Phys. Rev. Lett., 124, 213603(2020).

    [33] I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, R. L. Walsworth. Optimal control of light pulse storage and retrieval. Phys. Rev. Lett., 98, 243602(2007).

    [34] I. A. Walmsley, M. G. Raymer. Observation of macroscopic quantum fluctuations in stimulated Raman scattering. Phys. Rev. Lett., 50, 962-965(1983).

    [35] S. J. Kuo, D. T. Smithey, M. G. Raymer. Spatial interference of macroscopic light fields from independent Raman sources. Phys. Rev. A, 43, 4083-4086(1991).

    [36] M. Parniak, A. Leszczyński, W. Wasilewski. Coupling of four-wave mixing and Raman scattering by ground-state atomic coherence. Phys. Rev. A, 93, 053821(2016).

    [37] C. M. Caves. Quantum limits on noise in linear amplifiers. Phys. Rev. D, 26, 1817-1839(1982).

    [38] M. O. Scully, J. P. Dowling. Quantum-noise limits to matter-wave interferometry. Phys. Rev. A, 48, 3186-3190(1993).

    [39] M. Tse, H. Yu, N. Kijbunchoo, A. Fernandez-Galiana, P. Dupej, L. Barsotti, C. Blair, D. Brown, S. Dwyer, A. Effler. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett., 123, 231107(2019).

    [40] C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, M. D. Lukin. Atomic memory for correlated photon states. Science, 301, 196-200(2003).

    [41] M. F. Yanik, W. Suh, Z. Wang, S. Fan. Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. Phys. Rev. Lett., 93, 233903(2004).

    [42] P. Sharapova, A. M. Pérez, O. V. Tikhonova, M. V. Chekhova. Schmidt modes in the angular spectrum of bright squeezed vacuum. Phys. Rev. A, 91, 043816(2015).

    Xiaotian Feng, Zhifei Yu, Bing Chen, Shuying Chen, Yuan Wu, Donghui Fan, Chun-Hua Yuan, L. Q. Chen, Z. Y. Ou, Weiping Zhang. Reducing the mode-mismatch noises in atom–light interactions via optimization of the temporal waveform[J]. Photonics Research, 2020, 8(11): 1697
    Download Citation