• Photonics Research
  • Vol. 8, Issue 9, 1457 (2020)
Jan Wiersig*
Author Affiliations
  • Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Postfach 4120, D-39016 Magdeburg, Germany (jan.wiersig@ovgu.de)
  • show less
    DOI: 10.1364/PRJ.396115 Cite this Article Set citation alerts
    Jan Wiersig. Review of exceptional point-based sensors[J]. Photonics Research, 2020, 8(9): 1457 Copy Citation Text show less
    References

    [1] W. P. Reinhardt. Complex coordinates in the theory of atomic and molecular structure and dynamics. Ann. Rev. Phys. Chem., 33, 223-255(1982).

    [2] C. Keller, M. K. Oberthaler, R. Abfalterer, S. Bernet, J. Schmiedmayer, A. Zeilinger. Tailored complex potentials and Friedel’s law in atom optics. Phys. Rev. Lett., 79, 3327-3330(1997).

    [3] M. V. Berry, D. H. J. O’Dell. Diffraction by volume gratings with imaginary potentials. J. Phys. A, 31, 2093-2101(1998).

    [4] G. L. Celardo, L. Kaplan. Superradiance transition in one-dimensional nanostructures: an effective non-Hermitian Hamiltonian formalism. Phys. Rev. B, 79, 155108(2009).

    [5] G. E. Mitchell, A. Richter, H. A. Weidenmüller. Random matrices and chaos in nuclear physics: nuclear reactions. Rev. Mod. Phys., 82, 2845-2901(2010).

    [6] Y.-K. Lu, P. Peng, Q.-T. Cao, D. Xu, J. Wiersig, Q. Gong, Y.-F. Xiao. Spontaneous T-symmetry breaking and exceptional points in cavity quantum electrodynamics systems. Sci. Bull., 63, 1096-1100(2018).

    [7] H.-J. Stöckmann, E. Persson, Y.-H. Kim, M. Barth, U. Kuhl, I. Rotter. Effective Hamiltonian for a microwave billiard with attached waveguide. Phys. Rev. E, 65, 066211(2002).

    [8] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, D. Kip. Observation of parity-time symmetry in optics. Nat. Phys., 6, 192-195(2010).

    [9] J. Wiersig. Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A, 84, 063828(2011).

    [10] C. M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 80, 5243-5246(1998).

    [11] A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, U. Peschel. Parity-time synthetic photonic lattices. Nature, 488, 167-171(2012).

    [12] B. Peng, Ş. K. Özdemir, F. Lei, F. Monfi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys., 10, 394-398(2014).

    [13] S. Scheel, A. Szameit. PT-symmetric photonic quantum systems with gain and loss do not exit. Eur. Phys. Lett., 122, 34001(2018).

    [14] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, D. N. Christodoulides. Non-Hermitian physics and PT symmetry. Nat. Phys., 14, 11-19(2018).

    [15] L. Feng, R. El-Ganainy, L. Ge. Non-Hermitian photonics based on parity-time symmetry. Nat. Photonics, 11, 752-762(2017).

    [16] T. Kato. Perturbation Theory for Linear Operators(1966).

    [17] W. D. Heiss. Repulsion of resonance states and exceptional points. Phys. Rev. E, 61, 929-932(2000).

    [18] M. V. Berry. Physics of nonhermitian degeneracies. Czech. J. Phys., 54, 1039-1047(2004).

    [19] W. D. Heiss. Exceptional points of non-Hermitian operators. J. Phys. A, 37, 2455-2464(2004).

    [20] C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, A. Richter. Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett., 86, 787-790(2001).

    [21] C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, A. Richter. Encircling an exceptional point. Phys. Rev. E, 69, 056216(2004).

    [22] B. Dietz, T. Friedrich, J. Metz, M. Miski-Oglu, A. Richter, F. Schäfer, C. A. Stafford. Rabi oscillations at exceptional points in microwave billiards. Phys. Rev. E, 75, 027201(2007).

    [23] S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S. W. Kim, J.-H. Lee, K. An. Observation of an exceptional point in a chaotic optical microcavity. Phys. Rev. Lett., 103, 134101(2009).

    [24] J. Zhu, Ş. K. Özdemir, L. He, L. Yang. Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers. Opt. Express, 18, 23535-23543(2010).

    [25] B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, L. Yang. Chiral modes and directional lasing at exceptional points. Proc. Natl. Acad. Sci. USA, 113, 6845-6850(2016).

    [26] S. Richter, H.-G. Zirnstein, J. Zúñiga-Pérez, E. Krüger, C. Deparis, L. Trefflich, C. Sturm, B. Rosenow, M. Grundmann, R. Schmidt-Grund. Voigt exceptional points in an anisotropic ZnO-based planar microcavity: square-root topology, polarization vortices, and circularity. Phys. Rev. Lett., 123, 227401(2019).

    [27] M.-A. Miri, A. Alù. Exceptional points in optics and photonics. Science, 363, eaar7709(2019).

    [28] Ş. K. Özdemir, S. Rotter, F. Nori, L. Yang. Parity-time symmetry and exceptional points in photonics. Nat. Mater., 18, 783-798(2019).

    [29] J. Wiersig. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett., 112, 203901(2014).

    [30] J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 4, 46-49(2010).

    [31] L. He, Ş. K. Özdemir, J. Zhu, W. Kim, L. Yang. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol., 6, 428-432(2011).

    [32] F. Vollmer, L. Yang. Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics, 1, 267-291(2012).

    [33] W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully. The ring laser gyro. Rev. Mod. Phys., 57, 61-104(1985).

    [34] S. Sunada, T. Harayama. Design of resonant microcavities: application to optical gyroscopes. Opt. Express, 15, 16245-16254(2007).

    [35] L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, V. Jacques. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys., 77, 056503(2014).

    [36] E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, A. San Paulo, M. Calleja, J. Tamayo. Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. Nat. Nanotechnol., 5, 641-645(2010).

    [37] Y. Liu, L. Zhang, J. A. R. Williams, I. Bennio. Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating. IEEE Photon. Technol. Lett., 12, 531-533(2000).

    [38] J. Wiersig. Sensors operating at exceptional points: general theory. Phys. Rev. A, 93, 033809(2016).

    [39] J. Wiersig, D. Christodoulides, J. Yang. Non-Hermitian effects due to asymmetric backscattering of light in whispering-gallery microcavities. Parity-time Symmetry and Its Applications, 155-184(2018).

    [40] A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, V. Sandoghdar. Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light. Phys. Rev. Lett., 99, 173603(2007).

    [41] J. Wiersig. Nonorthogonality constraints in open quantum and wave systems. Phys. Rev. Res., 1, 033182(2019).

    [42] L. He, Ş. K. Özdemir, J. Zhu, L. Yang. Ultrasensitive detection of mode splitting in active optical microcavities. Phys. Rev. A, 82, 053810(2010).

    [43] J. Knittel, T. G. McRae, K. H. Lee, W. P. Bowen. Interferometric detection of mode splitting for whispering-gallery mode biosensors. Appl. Phys. Lett., 97, 123704(2010).

    [44] U. Kuhl, R. Höhmann, J. Main, H.-J. Stöckmann. Resonance widths in open microwave cavities studied by harmonic inversion. Phys. Rev. Lett., 100, 254101(2008).

    [45] W. Langbein. No exceptional precision of exceptional-point sensors. Phys. Rev. A, 98, 023805(2018).

    [46] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [47] H. Cao, J. Wiersig. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 87, 61-111(2015).

    [48] L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv. Mater., 25, 5616-5620(2013).

    [49] J. Wiersig, S. W. Kim, M. Hentschel. Asymmetric scattering and nonorthogonal mode patterns in optical microspirals. Phys. Rev. A, 78, 053809(2008).

    [50] J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara, M. Hentschel, H. Schomerus. Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities. Phys. Rev. A, 84, 023845(2011).

    [51] J. Wiersig. Chiral and nonorthogonal eigenstate pairs in open quantum systems with weak backscattering between counterpropagating traveling waves. Phys. Rev. A, 89, 012119(2014).

    [52] S. Liu, J. Wiersig, W. Sun, Y. Fan, L. Ge, J. Yang, S. Xiao, Q. Song, H. Cao. Transporting the optical chirality through the dynamical barriers in optical microcavities. Laser Photon. Rev., 12, 1800027(2018).

    [53] W. D. Heiss, H. L. Harney. The chirality of exceptional points. Eur. Phys. J. D, 17, 149-151(2001).

    [54] C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, A. Richter. Observation of a chiral state in a microwave cavity. Phys. Rev. Lett., 90, 034101(2003).

    [55] C. Wang, X. Jiang, G. Zhao, M. Zhang, C. W. Hsu, B. Peng, A. D. Stone, L. Yang. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys., 16, 334-340(2020).

    [56] J. Kullig, J. Wiersig. High-order exceptional points of counterpropagating waves in weakly deformed microdisk cavities. Phys. Rev. A, 100, 043837(2019).

    [57] J. Kullig, M. Yi, C.-H. Hentschel, J. Wiersig. Exceptional points of third-order in a layered optical microdisk cavity. New J. Phys., 20, 083016(2018).

    [58] A. Hassan, H. Hodaei, W. Hayenga, M. Khajavikhan, D. Christodoulides. Enhanced sensitivity in parity-time-symmetric microcavity sensors. Advanced Photonics, SeT4C.3(2015).

    [59] W. Chen, J. Zhang, B. Peng, Ş. K. Özdemir, X. Fan, L. Yang. Parity-time-symmetric whispering-gallery mode nanoparticle sensor. Photon. Res., 6, A23-A30(2018).

    [60] S. Zhang, Z. Yong, Y. Zhang, S. He. Parity-time symmetry breaking in coupled nanobeam cavities. Sci. Rep., 6, 24487(2015).

    [61] Z.-P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X.-Y. Lü, C.-W. Li, L. Yang, F. Nori, Y.-X. Liu. Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition. Phys. Rev. Lett., 117, 110802(2016).

    [62] J. Ren, H. Hodaei, G. Harari, A. U. Hassan, W. Chow, M. Soltani, D. Christodoulides, M. Khajavikhan. Ultrasensitive micro-scale parity-time-symmetric ring laser gyroscope. Opt. Lett., 42, 1556-1559(2017).

    [63] S. Sunada. Large Sagnac frequency splitting in a ring resonator operating at an exceptional point. Phys. Rev. A, 96, 033842(2017).

    [64] R. Sarma, L. Ge, J. Wiersig, H. Cao. Rotating optical microcavities with broken chiral symmetry. Phys. Rev. Lett., 114, 053903(2015).

    [65] B. Jin, W. Tan, C. Zhang, J. Wu, J. Chen, S. Zhang, P. Wu. High-performance terahertz sensing at exceptional points in a bilayer structure. Adv. Theory Simul., 1, 1800070(2018).

    [66] A. Jian, F. Liu, G. Bai, B. Zhang, Y. Zhang, Q. Zhang, X. Xue, S. Sang, X. Zhang. Parity-time symmetry based on resonant optical tunneling effect for biosensing. Opt. Commun., 475, 125815(2020).

    [67] M. Goryachev, B. McAllister, M. E. Tobar. Probing dark universe with exceptional points. Phys. Dark Univ., 23, 100244(2018).

    [68] J. Liu, L. Chen, K.-D. Zhu. Enhanced sensing of non-Newtonian effects at ultrashort range with exceptional points in optomechanical systems(2019).

    [69] J. Liu, L. Chen, F. He, K.-D. Zhu. Gravitational waves detection with exceptional points in micro cavities(2019).

    [70] Q. Zhong, J. Ren, M. Khajavikhan, D. N. Christodoulides, Ş. K. Özdemir, R. El-Ganainy. Sensing with exceptional surfaces in order to combine sensitivity with robustness. Phys. Rev. Lett., 122, 153902(2019).

    [71] Q. Zhong, S. Nelson, Ş. K. Özdemir, R. El-Ganainy. Controlling direction absorption with chiral exceptional surfaces. Opt. Lett., 44, 5242-5245(2019).

    [72] S. Wang, B. Hou, W. Lu, Y. Chen, Z. Q. Zhang, C. T. Chan. Arbitrary order exceptional point induced by photonic spin-orbit interaction in coupled resonators. Nat. Commun., 10, 832(2019).

    [73] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [74] H. Hodaei, A. Hassan, S. Wittek, H. Carcia-Cracia, R. El-Ganainy, D. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 548, 187-191(2017).

    [75] H. Zhao, Z. Chen, R. Zhao, L. Feng. Exceptional points engineered glass slide for microscopic thermal mapping. Nat. Commun., 9, 1764(2018).

    [76] M. Sakhdari, M. Hajizadegan, Y. Li, M. M.-C. Cheng, J. C. H. Hung, P.-Y. Chen. Ultrasensitive, parity-time-symmetric wireless reactive and resistive sensors. IEEE Sens. J., 18, 9548-9555(2018).

    [77] P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, A. Alù. Generalized parity-time symmetry condition for enhanced sensor telemetry. Nat. Electron., 1, 297-304(2018).

    [78] Z. Dong, Z. Li, F. Yang, C.-W. Qiu, J. S. Ho. Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. Nat. Electron., 2, 335-342(2019).

    [79] C. Zeng, Y. Sun, G. Li, Y. Li, H. Jiang, Y. Yang, H. Chen. Enhanced sensitivity at high-order exceptional points in a passive wireless sensing system. Opt. Express, 27, 27562-27572(2019).

    [80] M. P. Hokmabadi, A. Schumer, D. N. Christodoulides, M. Khajavikhan. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature, 576, 70-74(2019).

    [81] Y.-H. Lai, Y.-K. Lu, M.-G. Suh, Z. Yuan, K. Vahala. Observation of the exceptional-point-enhanced Sagnac effect. Nature, 576, 65-69(2019).

    [82] J. Miller. Exceptional points make for exceptional sensors. Phys. Today, 70, 23-26(2017).

    [83] L. Ge, Y. D. Chong, A. D. Stone. Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures. Phys. Rev. A, 85, 023802(2012).

    [84] J.-H. Park, A. Ndao, L. Hsu, A. Kodigala, T. Lepetit, Y.-H. Lo, B. Kanté. Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nat. Phys., 16, 462-468(2020).

    [85] N. A. Mortensen, P. A. D. Gonçalves, M. Khajavikhan, D. N. Christodoulides, C. Tserkezis, C. Wolff. Fluctuations and noise-limited sensing near the exceptional point of parity-time-symmetric resonator systems. Optica, 5, 1342-1346(2018).

    [86] C. Wolff, C. Tserkezis, N. A. Mortensen. On the time evolution at a fluctuating exceptional point. Nanophotonics, 8, 1319-1326(2019).

    [87] Z. Xiao, H. Li, T. Kottos, A. Alù. Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point. Phys. Rev. Lett., 123, 213901(2019).

    [88] J. Wiersig. Robustness of exceptional-point-based sensors against parametric noise: the role of Hamiltonian and Liouvillian degeneracies. Phys. Rev. A, 101, 053846(2020).

    [89] F. Minganti, A. Miranowicz, R. W. Chhajlany, F. Nori. Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: the effects of quantum jumps. Phys. Rev. A, 100, 062131(2019).

    [90] H.-K. Lau, A. A. Clerk. Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nat. Commun., 9, 4320(2018).

    [91] M. Zhang, W. Sweeney, C. W. Hsu, L. Yang, A. D. Stone, L. Jiang. Quantum noise theory of exceptional point amplifying sensors. Phys. Rev. Lett., 123, 180501(2019).

    [92] C. Chen, L. Jin, R.-B. Liu. Sensitivity of parameter estimation near the exceptional point of a non-Hermitian system. New J. Phys., 21, 083002(2019).

    [93] S. Sunada. Enhanced response of non-Hermitian photonic systems near exceptional points. Phys. Rev. A, 97, 043804(2018).

    [94] H. Wang, Y.-H. Lai, Z. Yuan, M.-G. Suh, K. Vahala. Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope. Nat. Commun., 11, 1610(2020).

    [95] K. Petermann. Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding. IEEE J. Quantum Electron., 15, 566-570(1979).

    [96] A. E. Siegman. Excess spontaneous emission in non-Hermitian optical systems. I. Laser amplifiers. Phys. Rev. A, 39, 1253-1263(1989).

    [97] A. E. Siegman. Excess spontaneous emission in non-Hermitian optical systems. II. Laser oscillators. Phys. Rev. A, 39, 1264-1268(1989).

    [98] H. Schomerus. Excess quantum noise due to mode orthogonality in dielectric microresonators. Phys. Rev. A, 79, 061801(2009).

    [99] M. V. Berry. Mode degeneracies and the Petermann excess-noise factor for unstable lasers. J. Mod. Opt., 50, 63-81(2003).

    [100] M. Naghiloo, M. Abbasi, Y. N. Joglekar, K. W. Murch. Quantum state tomography across the exceptional point in a single dissipative qubit. Nat. Phys., 15, 1232-1236(2019).

    CLP Journals

    [1] Qi Geng, Ka-Di Zhu. Discrepancy between transmission spectrum splitting and eigenvalue splitting: a reexamination on exceptional point-based sensors[J]. Photonics Research, 2021, 9(8): 1645