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Exceptional points are spectral singularities in open quantum and wave systems that exhibit a strong spectral
response to perturbations. This feature can be exploited for a new generation of sensors. This paper explains
the basic mechanism and comprehensively reviews the recent developments. In particular, it highlights the in-
fluence of classical noise and fundamental limitations due to quantum noise. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.396115

1. INTRODUCTION

One of the theorems of quantum mechanics states that physical
observables are represented by Hermitian linear operators. This
is in particular true for the Hamiltonian Ĥ , which represents
the energy and governs the time evolution of a given system via
the Schrödinger equation (ℏ is set to unity)

i
d

dt
jψi � Ĥ jψi: (1)

However, for open quantum systems, it can be justified to con-
sider effective Hamiltonians that are non-Hermitian or non-self-
adjoint, Ĥ ≠ Ĥ † [1–5]. Note that we here do not distinguish
between Hermiticity and self-adjointness; for caveats, see
Ref. [6]. Non-Hermitian Hamiltonians can also be used for
open classical wave systems when a Schrödinger-like equation,
as in Eq. (1), holds [7–9]. The non-Hermiticity of the
Hamiltonian implies that its eigenvalues, the energy eigenvalues,
are in general complex numbers. The negative imaginary part is a
decay constant related to a finite spectral linewidth at the reso-
nant energy given by the real part of the eigenvalue. In classical
optical systems, where resonant frequencies and modes play the
role of energy eigenvalues and eigenstates, non-Hermiticity can
enter by absorption, gain, and radiation. A special class of non-
Hermitian systems is PT -symmetric systems [8,10–13] which
are invariant under a combination of parity (P) and time-reversal
(T ) operations. Such a system can possess an entirely real eigen-
value spectrum despite being non-Hermitian. Applications of
PT symmetry are reviewed in Refs. [14,15].

If the Hamiltonian is not only non-Hermitian but also
non-normal, i.e., �Ĥ , Ĥ †� ≠ 0, then its (right) eigenstates are
mutually nonorthogonal. This nonorthogonality becomes maxi-
mal at exceptional points (EPs) in parameter space [16–19],
at which the eigenstates of the Hamiltonian fail to provide a
basis for the Hilbert space. Approaching an EP of order n
(short: EPn), not only n eigenvalues but also the corresponding
n states coalesce. While in earlier stages EPs have been regarded
as a mathematical curiosity, their existence has been meanwhile

proven in experiments on microwave cavities [20–22], optical
microcavities [12,23–26] for light confinement, and other sys-
tems. An overview on EPs in optics and photonics can be found
in Refs. [27,28].

A crucial difference between EPs and conventional degen-
eracies, so-called diabolic points (DPs), is the strong response of
the eigenvalues to external perturbations. When a DP is sub-
jected to a perturbation of strength ε, then the resulting energy
(or frequency) splittings are proportional to ε. As illustrated in
Fig. 1, this is in strong contrast to the case of an EPn where the
resulting energy splittings are generically proportional to the
nth root of ε [16]. Hence, the absolute values of the splittings
in the EP case are parametrically larger, meaning that for suf-
ficiently small perturbations, the splitting is larger than in the
DP case for exactly the same perturbation.

The splitting enhancement factor, defined as the ratio of the
EP-enhanced splitting and the splitting at a corresponding DP,
therefore scales with ε−�1−1∕n� for small ε. Formally, this en-
hancement factor goes to infinity as ε → 0. It is this strong
enhancement at EPs that can be exploited for sensing applica-
tions based on the detection of frequency splittings [29].
Devices based on the detection of frequency splittings at
DPs are commonly utilized in microcavity sensors for particle
detection [30–32], optical gyroscopes [33,34], weak magnetic
field sensors [35], nanomechanical mass sensors [36], and
bending curvature sensors [37].

In this review paper, we summarize the recent developments
in the field of EP-based sensors. The outline of the paper is as
follows. In Section 2, the basic mechanism is explained.
Theoretical proposals are discussed in Section 3 and experimen-
tal realizations are reviewed in Section 4. Section 5 deals with
the influence and classical and quantum noise. Finally, a sum-
mary and outlook are given in Section 6.

2. BASIC MECHANISM

We describe EP-based sensors in the formalism established in
Refs. [29,38]. For an n-fold degeneracy, the sensor is described
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by the n × n system Hamiltonian Ĥ 0, with all eigenvalues being
equal. The input quantity of interest is parametrized by ε and is
considered as a perturbation

Ĥ �ε� � Ĥ 0 � εĤ 1, (2)

with the n × n perturbation Hamiltonian Ĥ 1. The resulting
eigenvalue splittings are the output quantities which can be
measured by spectral means; see the illustration in Fig. 1(b).
According to Kato [16], the splittings are proportional to
the nth root of ε for an EPn, whereas for a DP, the splittings
are proportional to ε.

For illustration purpose, we focus in this section on sensors
based on a two-fold degeneracy. In the case of a DP, the
2 × 2-matrix Ĥ 0 can be diagonalized to

Ĥ 0jDP �
�
E0 0
0 E0

�
, (3)

with complex eigenvalue E0. Obviously, two linearly indepen-
dent eigenvectors exist which can be chosen to be �1, 0�T and
�0, 1�T. The superscript Tmarks the transpose of the vector. At
an EP a diagonalization is not possible, but a transformation to

Ĥ 0jEP �
�
E0 A0

0 E0

�
(4)

is with complex eigenvalue E0 and off-diagonal element
A0 ≠ 0. By scaling the matrix [Eq. (4)], the off-diagonal
element A0 can be replaced by unity, which would give the
Jordan normal form of the EP. In contrast to the matrix in
Eq. (3), the matrix in Eq. (4) has only one eigenvector (up
to proportionality), �1, 0�T.

With the general 2 × 2 perturbation Hamiltonian

Ĥ 1 �
�
E1 A1

B1 E2

�
, (5)

it is straightforward to show that the eigenvalue splitting of Ĥ
for the DP is proportional to ε,

ΔEDP � ε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�E2 − E1�2 � 4A1B1

p
: (6)

For the EP, the splitting is

ΔEEP �
ffiffiffi
ε

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε�E2 − E1�2 � 4A0B1 � 4εA1B1

p
� ffiffiffi

ε
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

4A0B1

p
�O�ε�, (7)

which is proportional to
ffiffiffi
ε

p
for small jεj provided that B1 ≠ 0.

In this generic case, we can conclude that for sufficiently small
perturbation strength, the splitting in the EP case is larger than
in the DP case; see Fig. 1(a). The splitting in the EP case
strongly depends on jA0j which, in Ref. [39], is called the
strength of the EP and is compared metaphorically to the ten-
sion of a crossbow. The larger the tension, the larger the en-
hancement of the effect of the perturbation, which is the
pulling of the trigger. The DP has zero strength (A0 � 0),
corresponding to an untensioned crossbow.

Note that for non-Hermitian Hamiltonians, the splittings in
Eqs. (6) and (7) are in general complex valued. It is therefore
appropriate to measure both the real frequency splitting ReΔE
and the linewidth splitting −2 ImΔE which can be done; see,
for example, Refs. [30,40]. If only the real part of the splitting is
experimentally accessible, then one should arrange a situation
where the complex splitting is not dominated by the imagi-
nary part.

It is mentioned that the EP enhancement also applies to the
individual shift of (the real part of ) the frequencies, but not to
the mean value of the two frequencies. The measurement of
frequency shifts is the more common sensing scheme for micro-
cavity sensors. However, independent of the EP enhancement,
one considerable advantage of measuring the splitting is that it
is intrinsically self-referenced [30], i.e., there is no need for an
external reference to suppress or eliminate thermal drifts, etc.

For passive systems, i.e., systems without gain, at an EP2
there is an upper bound of the strength of the EP in the
Hamiltonian [Eq. (4)] [38] (for caveats see Ref. [41]):

jA0j ≤ 2jImE0j: (8)

As the frequency splitting [Eq. (7)] has to overcome the individual
linewidths in order to separate the modes spectrally [Fig. 1(b)] by
standard means, one has to come close to this bound [Eq. (8)].
For active systems, including PT -symmetric systems, a bound
as in Eq. (8) does not exist. Hence, one can introduce gain to
narrow the spectral linewidth, thereby improving the resolvability
of the peaks [31,42]. Further methods to efficiently resolve spec-
tral peaks are the interferometric detection of frequency splittings
[43] and the harmonic inversion technique [44].

For an EP3, the Jordan normal form [cf. Eq. (4) with
A0 � 1] of the 3 × 3 system Hamiltonian reads

Ĥ 0jEP �
 E0 1 0

0 E0 1
0 0 E0

!
: (9)

The matrix in Eq. (9) has only one eigenvector �1, 0, 0�T, again
up to proportionality, with complex eigenvalue E0. This degen-
eracy is lifted by a generic 3 × 3 perturbation Hamiltonian Ĥ 1

[as in Eq. (2)], leading to three eigenvalues. For small jεj, the
eigenvalue splittings scale with

ffiffiffi
ε3

p
, which gives an even

stronger enhancement than in the EP2 case.

Fig. 1. Illustration of the enhanced frequency splitting induced by
perturbing a non-Hermitian Hamiltonian at an exceptional point of
second order (red curve) compared to the case of a conventional degen-
eracy (blue dash-dotted curve). In both cases, the same perturbation
has been applied. (a) Splitting versus perturbation strength ε.
(b) Spectra for fixed ε designated by the vertical line in (a). The dou-
ble-arrowed lines indicate the splitting, which is considerably larger for
the exceptional point.
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In the literature, the enhanced eigenvalue splitting has often
been called enhanced sensitivity. However, the term “sensitiv-
ity” might be misleading [45], as it is used in two different
ways: (i) for the transduction coefficient of the sensor from
the input quantity of interest (here ε) to the output quantity
(here ΔE ), or (ii) for the smallest measurable change of the
input quantity. The latter is the precision of the sensor, and
it is characterized by the signal-to-noise ratio. Because of its
ambiguity, the term “sensitivity” is avoided henceforth.

3. THEORETICAL PROPOSALS

There have been a number of proposals for EP-based sensors in
various different physical settings; the first was on whispering-
gallery microcavities for single- or few-particle detection
[29,38]; see Fig. 2(a). Whispering-gallery microcavities confine
clockwise (CW) and counterclockwise (CCW) propagating
light waves with ultralow losses by total internal reflection;
see Refs. [46,47]. Microcavity sensors for label-free particle de-
tection are commonly used; see, Refs. [30,48]. In the context of
EP-enhanced sensing, the Hamiltonian in Eq. (4) appears nat-
urally in a two-mode approximation in the basis of CCW and
CW propagating waves, with state vector �ψCCW ,ψCW�T. The
diagonal elements are the frequencies of the waves, which are
equal (here E0), as required by reciprocity [38]. The off-
diagonal elements are backscattering coefficients, which can
be different due to asymmetric backscattering at deformed
boundaries and external or internal scatterers (e.g., air holes)
[9,25,38,39,49–52]. At an EP2, one of the backscattering
coefficients is zero, and the other one, here A0, is nonzero.
Physically, this means that there is coherent backscattering from
the CW to the CCW propagating direction but not the other
way around. The backscattering is said to be fully asymmetric.
As a result, only one eigenvector �1, 0�T exists, which corre-
sponds to a purely CCW propagating mode. This unidirec-
tional propagation reflects the chirality of the EP [50,53–55].
A target particle approaching the evanescent field of the micro-
cavity corresponds to the perturbation in Eq. (5); it leads to
a square-root frequency splitting as in Eq. (7).

Further approaches to implementing EPs in microdisk
cavities with the purpose of enhanced sensing have been intro-
duced by appropriate boundary deformations generating EPs of

fourth order [56], and by using a rotationally symmetric layered
refractive-index profile [57]. The latter approach has been pro-
posed for sensing the refractive index of a thin additional layer.

Another scheme is based on coupled cavities [58], as illus-
trated in Fig. 2(b). Two microrings in close proximity were
coupled by their evanescent fields. They are supposed to be
identical except that one cavity possesses gain and the other
one exactly the same amount of loss. Hence, the system is
PT -symmetric. In a two-mode approximation with state vector
�ψ1,ψ2�T, the Hamiltonian is that of a PT -symmetric dimer

Ĥ 0 �
�
ω0 � iα g

g ω0 − iα

�
: (10)

Here, ω0 is the real-valued frequency, α ≥ 0 is the gain/loss
coefficient, and g ≥ 0 is the coupling strength. The eigenvalues
of the Hamiltonian in Eq. (10) are given by

E� � ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − α2

q
: (11)

The eigenvalues degenerate if g � α. This degeneracy is a DP
with eigenvectors �1, 0�T and �0, 1�T if α � 0; otherwise, it is
an EP with a single eigenvector �1, − i�T∕ ffiffiffi

2
p

. Associated with
the latter situation, there is the so-called PT -symmetric phase
g ≥ α, where the eigenvalues are real valued. In the PT -broken
phase g < α, the eigenvalues are complex conjugate of each
other. As in the previous example, the proximity of a target
particle is a perturbation to the system Hamiltonian, here in
Eq. (10). Assuming that the target particle comes close only
to the gain microring, the particle modifies the frequency of
the associated mode of the gain ring by an amount ε. This leads
to the perturbation Hamiltonian

Ĥ 1 �
�
1 0
0 0

�
: (12)

The resulting frequency splitting is
ffiffiffiffiffiffiffi
iαε

p
for jεj ≪ 4α. Here,

the real and imaginary splittings are of the same size. Note
that the validity of the two-mode approximation [Eq. (10)]
is questionable as long-lived modes in optical microrings come
in degenerate pairs, with one CW propagating mode and one
CCW propagating mode. Hence, a four-mode approximation
is more appropriate [59].

A related two-mode PT -symmetric system consisting of
two coupled nanobeam cavities has been suggested [60]. A
combination with optomechanics for enhanced metrology for
displacement measurements has been presented in Ref. [61].

It has been proposed to apply the concept of EP-based sens-
ing also to cavity-based optical gyroscopes [62,63] for the mea-
surement of rotations. Optical gyroscopes are being widely used
nowadays for navigation, e.g., in commercial aircraft. The prin-
ciple of operation is the Sagnac effect. It is the opposite shift
of the frequencies of counterpropagating optical waves in a ro-
tating cavity, and scales linearly with the rotational velocity Ω.
If the non-rotating system is prepared at an EP2, then the
rotation-induced frequency splitting is proportional to

ffiffiffiffi
Ω

p
.

For a PT -symmetric pair of coupled microrings such as in
Fig. 2(b), it has been shown that the splitting is enhanced when
the pair of rings is rotated. Remarkably, in the limit of maxi-
mum enhancement, the splitting is independent of the radii of

CCW

CW

(b)

target

(a)

gain

1

loss

2

Fig. 2. Two proposals for EP-based sensors. (a) Microdisk cavity
with two external scatterers (particles or nano-tips on the right) which
implement an EP2 by generating fully asymmetric backscattering. As a
result, only one mode [here counterclockwise (CCW) propagating] of
the given mode pair exists. A target particle shown on the left induces
additional backscattering, leading to an enhanced frequency splitting.
(b) PT -symmetric pair of microrings, one with gain (ring 1) and one
with loss (ring 2).
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the rings involved [62]. An improvement of more than six or-
ders of magnitude has been estimated. A single-cavity approach
based on a microring with PT -symmetric variation of the
refractive index in the azimuthal direction has also been intro-
duced [63]. Yet another approach to EP-enhanced measure-
ments of rotations is to exploit the chirality of EPs [64].

Using a similar Hamiltonian as in Eq. (10), a bilayer struc-
ture composed of two different metamaterials with split-ring
resonators has been proposed for refractive-index sensing in
the terahertz regime [65], and a multi-layer structure based
on the resonant optical tunneling effect has been suggested
for biosensing [66]. Further proposals have been made for
detecting dark-matter candidates [67], non-Newtonian effects
in gravitation [68], and gravitational waves [69].

The advantage of the strong response at an EP is a disad-
vantage for fabrication since low tolerances are required. As a
solution to this problem, the so-called exceptional surfaces have
been introduced [70,71]. The idea is that certain perturbations
do not move the system away from the EP. Examples of such
perturbations are changing the values of A0 and E0 (equally in
both diagonal elements) in the Hamiltonian in Eq. (4). Hence,
the values of A0 and E0 define a two-parameter family of EPs,
the exceptional surface. Provided that the system’s response is
tailored such that most of the experimental uncertainties shift
the operating point along the exceptional surface, the system
can be robust and, at the same time, enhanced eigenvalue

splittings are possible if the target perturbation pushes the sys-
tem away from the surface.

An interesting setup for enhanced sensing with EPs of
higher order is based on photonic spin–orbit interaction
[72]. The spin–orbit interaction couples chiral dipolar modes
in different cavities via an adjacent waveguide in a unidirec-
tional manner. This is analogous to the fully asymmetric back-
scattering of CW and CCW propagating waves in a perturbed
whispering-gallery cavity, but the setup can be scaled to higher-
order EPs. Note that this setup can be considered as an appli-
cation of the just-discussed concept of exceptional surfaces.
Numerical simulations have shown an ε1∕10 behavior of the
frequency splittings at an EP10. Microwave experiments have
demonstrated evidence for unidirectional coupling, but there
is no experimental demonstration of the enhanced sensing
in this setup.

4. EXPERIMENTAL REALIZATIONS

Based on the original proposal [29], various experimental real-
izations of EP-based sensors have been developed [73–81].
Figure 3 shows a non-exhaustive compilation.

The first demonstrations of the superior performance of
such sensors were done for single-particle detection [73] and
thermal sensing [74] (see also Ref. [82]). In Ref. [73] the au-
thors investigated a whispering-gallery microtoroidal cavity

Fig. 3. Various experimental realizations of EP-based sensors. (a) Optical image of a microtoroidal cavity together with a fiber-taper waveguide
and three nano-tips for particle detection. Reprinted by permission from Springer Nature: Nature [73], copyright 2017. (b) Illustration and SEM
(scanning electron microscope) image of a PT -symmetric ternary microring system for thermal sensing; inset exposes the heating elements under-
neath each cavity for fine-tuning and thermal perturbation. Reprinted by permission from Springer Nature: Nature [74], copyright 2017. (c) Sketch
of a ring laser gyroscope with three mirrors, a Faraday rotator (FR), a half-wave plate (HWP), two Brewster windows (BW), and a He–Ne gas tube as
gain medium. Reprinted by permission from Springer Nature: Nature [80], copyright 2019. (d) Computed tomography reconstruction of a wireless
PT -symmetric microsensor implanted in a rat abdomen. Reprinted by permission from Springer Nature: Nature Electronics [78], copyright 2019.
(e) Schematics and optical image of the thermo-sensitive microscope slide for thermal mapping; from Ref. [75]. (f ) Illustration of a laser gyroscope
with stimulated Brillouin laser (SBL) action pumped optically at two different frequencies ωp1 and ωp2 via an attached waveguide which induces
backscattering with rate κ. Reprinted by permission from Springer Nature: Nature [81], copyright 2019.
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made of silica. The EP2 is based on asymmetric backscattering
established by two precisely adjusted nano-tips [see Fig. 3(a)],
following closely the proposal in Ref. [29]; see Fig. 2(a).
Figure 4 embodies the central result of Ref. [73]. In the absence
of a target particle the transmission spectra for the DP-based
sensor [Fig. 4(a)] and EP-based sensor [Fig. 4(c)], obtained
by coupling light in and out via two waveguides, show no fre-
quency splitting. If the target particle [an (additional) nano-tip
or a single polystyrene nanoparticle with a radius of 200 nm] is
approaching the cavity a clear splitting can be seen, which is by
a factor of around 2 larger in the EP case; cf. Figs. 4(b) and 4(d).
Varying the distance between the target particle and the sur-
face of the microtoroid, the splitting enhancement factor as
a function of the perturbation strength has been determined
[Fig. 4(e)]. Both the real and imaginary parts of the frequency
splitting have been measured. A moderate enhancement factor
of maximal 2.5 can be observed for small perturbations.
Moreover, it has been demonstrated that the resolvability of
the splittings at the EP can be improved by optical gain
generated by pumping erbium ions embedded into the
microcavity.

Figure 3(b) shows the PT -symmetric ternary microring sys-
tem for thermal sensing [74]. The side cavities experience bal-
anced gain (iα) and loss (−iα), whereas the middle one is
neutral. The desired gain/loss distribution is realized by an
inhomogeneous optical pumping of InGaAsP quantum wells
inside the microrings. The individual frequencies of the cavities
are fine-tuned to the same value using three gold microheaters
underneath each cavity. Within a three-mode approximation
and a rotating frame, the system Hamiltonian is

Ĥ 0 �
 iα κ 0

κ 0 κ
0 κ −iα

!
: (13)

Adjusting the coupling constant κ to be α∕
ffiffiffi
2

p
, an EP3 is gen-

erated. To check the performance for thermal sensing, one of
the microheaters has been used to introduce a thermal pertur-
bation of strength ε to the gain cavity,

Ĥ 1 �
 
1 0 0
0 0 0
0 0 0

!
: (14)

A six-mode approximation is not necessary, as the perturbation
acts equally on CW and CCW propagation ring modes. The
experiment has clearly demonstrated (real-valued) frequency
splittings proportional to ε1∕3, with an impressive maximal en-
hancement factor of 23. The imaginary splittings are strongly
influenced by nonlinear gain saturation and laser dynamics,
which can be anticipated from the fact that one of the frequen-
cies of the linear system resulting from Eqs. (13) and (14) has a
positive imaginary part. These nonlinear dynamic aspects have
not been studied in the theory.

The concept of EP-based sensing has also been applied in a
modified fashion to thermal mapping [75]. Zhao and cowork-
ers coated a conventional microscope slide such that the cor-
responding scattering matrix is at an EP2; note that the
definition of an EP of a scattering matrix is ambiguous [83].
Figure 3(e) shows the three-layer structure with a polymer
(PMMA) layer sandwiched between two gold films deposited
on a silica glass slide. The key idea is that ambient thermal per-
turbations lead to a local change of the thickness of the polymer
layer, causing a strong response of the eigenvalues of the
scattering matrix and consequently a drastic increase of the re-
flection. Through reflection measurements, the temperature
distribution of the glass slide can be monitored with a roughly
tenfold enhanced optical-thermal signal transduction and high
spatial resolution.

Another interesting and potentially very relevant class
of realizations is wireless EP-based sensors [76–79].
Applications of wireless sensors range from medical diagnosis
to industrial and environmental monitoring. The principle
of operation is the inductive coupling between the sensor
and a reader. The quantity to be measured detunes capacitive
or inductive elements of the sensor, which lead to frequency
shifts measured externally by the reader. A particular fascinating
experiment, depicted in Fig. 3(d), is on an EP2-based micro-
sensor subcutaneously implanted in a rat abdomen [78].

Fig. 4. Results on the microtoroidal sensor in the experiment of Chen et al. [73]. The transmission spectra of a DP-based sensor (a) before and
(b) after adsorption of a target particle on the surface of the cavity. The transmission spectra of an EP-based sensor (c) before and after (d) adsorption
of the same target particle. The blue arrows illustrate the symmetric backscattering at the target particle, and the red arrowmarks the fully asymmetric
backscattering related to the EP. The dashed vertical lines in (b) and (d) pinpoint the resulting frequency splitting. (e) Measured splitting enhance-
ment factor versus perturbation strength ε. The double logarithmic plot in the inset displays the two different splittings versus ε. The DP-based
sensor (red circles) exhibits a slope of 1, whereas the EP-based sensor (blue squares) exhibits a slope of 1/2 (solid black line) for sufficiently small
perturbations, confirming the square-root behavior at an EP2. Reprinted by permission from Springer Nature: Nature [73], copyright 2017.
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The sensor can continuously and accurately track the rat’s
breathing rate arising from the motion of the abdomen during
respiration, which causes a modulation of the inductive cou-
pling between the reader and the sensor. A splitting enhance-
ment factor of 3.2 beyond the DP case limit that applies to all
existing wireless readout schemes has been observed. The over-
all detection limit has been in total lowered by a factor of 26,
including the help of the narrowing of spectral lines by the
reader’s gain. A conceptional difference from previous wireless
EP-sensors is here that the reader is a PT -symmetric two-mode
system (frequency ω0, gain/loss coefficient α, and coupling con-
stant g) locked to an EP2 (g � α), and the sensor is an addi-
tional single-mode system (frequency ωs and decay rate γs)
whose sole function is to generate the perturbation of strength
ε by the inductive coupling to the reader,

Ĥ 0 �

0
B@

ω0 � iα g 0

g ω0 − iα 0

0 0 ωs − iγs

1
CA,

Ĥ 1 �

0
B@

0 0 1

0 0 1

1 1 0

1
CA: (15)

In previous wireless EP-sensors [76,77], the reader and sensor
together form a PT -symmetric two-mode system biased at an
EP2, and the perturbation acts on the sensor mode. The new
design of Ref. [78] shows a significantly improved performance.
A passive wireless sensing system at an EP3 has been fabricated
as well [79].

Ring laser gyroscopes with EP-based enhancement have also
been successfully built and investigated [80,81]. Figure 3(c) il-
lustrates the setup of Ref. [80]. It is a macroscopic equilateral
cavity made of three highly reflective mirrors. A Faraday rota-
tor, a half-wave plate, and two Brewster windows incorporated
on both ends of a He–Ne gas tube are used to establish different
gain/loss coefficients γ1 and γ2 for CCW and CW propagating
waves. In addition, a weak conservative backscattering of coun-
terpropagating waves is introduced by inserting an etalon into
the cavity. With g being the strength of the backscattering and
ω0 the frequency of both propagating waves, the Hamiltonian
can be written in a two-mode approximation as

Ĥ 0 �
�
ω0 − iγ1 g

g ω0 − iγ2

�
(16)

in the basis of the pair of counterpropagating waves. The sys-
tem has been biased at the EP2 with g � jγ1 − γ2j∕2 > 0 by
fine-tuning the differential gain/loss jγ1 − γ2j. Rotating the
cavity with velocity Ω acts as a perturbation Hamiltonian

Ĥ 1 �
�
1 0
0 −1

�
(17)

with perturbation strength ε ∝ Ω. The resulting frequency
splitting is proportional to

ffiffiffiffi
Ω

p
. The measured data [80] have

clearly demonstrated this enhanced response of the gyroscope
at the EP with an enhancement factor larger than 1 order of
magnitude.

The laser gyroscope in Ref. [81] is of a very different type.
The microscopic system is made of a high-quality silica

microdisk; see Fig. 3(f ). Stimulated Brillouin processes lead
to lasing action of a chosen pair of counterpropagating waves,
resulting in ultranarrow spectral linewidths. Moreover, the
Brillouin processes modify the frequencies of the two involved
modes ω1 and ω2 such that they exhibit a nonzero detuning
even in the absence of rotation. This detuning can be precisely
adjusted by properly choosing the pump frequencies ωp1 and
ωp2. The presence of the waveguide that is used to pump the
Brillouin laser modes induces scattering losses with the rate γ
and backscattering of the counterpropagating waves with the
rate κ. Assuming dissipative backscattering, only the system
Hamiltonian is given by

Ĥ 0 �
�
ω1 − iγ iκ

iκ ω2 − iγ

�
(18)

in the basis of the pair of counterpropagating waves. Adjusting
the pump frequencies such that jω2 − ω1j � 2κ > 0 brings the
sensor to an EP2. Rotating the cavity with velocity Ω acts as the
perturbation Hamiltonian in Eq. (17) with strength ε ∝ Ω.
The induced frequency splitting is again proportional toffiffiffiffi
Ω

p
. The experiment in Ref. [81] has confirmed this enhanced

response of the gyroscope and reported a splitting enhancement
factor of 4.

Recently, EP-based sensors have also been produced in the
plasmonic domain [84]. Plasmonic systems are of particular in-
terest for sensing, as electromagnetic fields can be greatly en-
hanced inside plasmonic hot spots. This opens the possibility to
carry out sensing on the nanoscale. The EP-based sensor in
Ref. [84] consists of a bilayer structure made of two arrays
of dissimilar plasmonic resonators. A Hamiltonian is not
provided, as the system has been discussed in terms of second-
order differential equations for coupled oscillators. By function-
alizing the surface of the sensor, the authors have successfully
demonstrated that the sensor can selectively detect anti-
immunoglobulin G, an important immunoglobulin in human
serum, with enhanced frequency splitting.

5. INFLUENCE OF NOISE

A. Classical Noise
The strong response of EPs to weak perturbations naturally
raises the question of the influence of noise on the performance
of EP-based sensors. Here we review the work done on classical,
i.e., technical, noise related to EP-based sensors. Let us consider
the total Hamiltonian with parametric noise

Ĥ tot�t� � Ĥ �ε� �
XK
j�1

ξj�t�Ĥ noise,j, (19)

where K ≥ 1 is the number of statistically independent noise
sources and the ξj are real-valued fluctuations with zero mean
ξj�t� � 0. The overline denotes an ensemble average over all
possible realizations of the noise. As before, Ĥ �ε� is the
time-independent and non-Hermitian Hamiltonian describing
the sensor and perturbation by virtue of Eq. (2). Ĥ noise,j are
time-independent and in general non-Hermitian operators de-
scribing the fluctuations of the matrix elements of the total
Hamiltonian. Note that the noise in the total Hamiltonian
in Eq. (19) enters the sensor as multiplicative noise in the
Schrödinger equation [Eq. (1)]. It describes a noisy EP rather
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than a noisy input channel. The latter is relevant for the quan-
tum noise discussed in Section 5.B.

We may classify the noise according to the correlation time.
Infinite correlation time implies static disorder which has been
studied in Ref. [85]. Not unexpectedly, static disorder blurs the
spectral features after ensemble average. Fluctuations with lim-
ited correlation time, i.e., temporal noise, have been investi-
gated in Refs. [86–88].

The authors in Ref. [86] have addressed the impact of a sin-
gle noise source (K � 1) on an EP-based sensor made of the
PT -symmetric dimer in Eq. (10). The noisy element is a fluc-
tuating on-site frequency detuning described by the noise
Hamiltonian

Ĥ noise,1 �
�
1 0
0 −1

�
: (20)

The spectrum of ξ1�t� has been required to be nonwhite, as it
has a high-frequency cutoff and a gap around the frequency of
the EP. The latter has been justified by the presence of an active
stabilization circuit. It is difficult to judge to what extent the
various approximations involved are fully consistent. The basic
finding of Ref. [86] is that the system is dynamically unstable.
Numerics show that the norm of any initial state grows asymp-
totically like exp� ffiffiffiffiffi

2γ
p

t − 1� with a fitting constant γ.
Nonlinear effects, which might counteract the instability, are
ignored.

The general case of K noise sources is treated in Ref. [88]. It
is assumed that the ξj describe stationary white Gaussian noise
ξi�t�ξj�t 0� � γjδijδ�t − t 0� with noise strengths γj. For mono-
chromatic excitation with frequency ω, the dynamics of the
density operator ρ̂�t� � jψ�t�ihψ�t�j is described by an inho-
mogeneous Lindblad-type master equation

dρ̂

dt
� Lρ̂� P̂�ω� (21)

with the superoperator L:

Lρ̂ � −i�Ĥ eff ρ̂ − ρ̂Ĥ
†
eff � �

X
j

γjĤ noise,jρ̂Ĥ
†
noise,j, (22)

and the effective Hamiltonian

Ĥ eff �ε� � Ĥ �ε� − i
2

X
j
γjĤ

2
noise,j: (23)

The pump operator P̂�ω� in Eq. (21) has poles at the eigen-
values of Ĥ eff . From the preceding equations it can be con-
cluded that (i) the resolvability of frequency splittings at and
near an EP is determined by Ĥ eff, and (ii) the stability of
the system is determined by the superoperator L. The latter
can be discussed in Liouville space, where ρ̂ and P̂ are repre-
sented as n2-dimensional vectors and L is represented as an
n2 × n2 matrix (the Liouvillian). A stationary state ρ̂ is in gen-
eral only possible if all eigenvalues of the Liouvillian λl have
nonpositive real part. A crucial result is that for a noiseless sen-
sor, the Hamiltonian EPn carries over to a Liouvillian EP2n−1
[88,89], i.e., the latter is of higher order than the Hamiltonian
one. Hence, the eigenvalues λl show an extreme response to
noise, so one eigenvalue may easily cross the imaginary axis
leading to a dynamical instability.

The instability, however, can be removed by a uniform
damping of the sensor, i.e., by adding −iκ1 to Ĥ 0, with
the rate κ above the critical rate κc � Re λ1∕2, with
λ1�γ1,…, γK � being the eigenvalue with the largest real part.
Obviously, this reduces the resolvability because the linewidths
broaden significantly. Hence, for EP-based sensors operating
at or close to the real frequency axis, as for instance in the case
of PT -symmetric systems, even small noise can indirectly, via
the necessary stabilization, spoil the resolvability.

However, this does not mean that EP-based sensors are fun-
damentally limited by classical/technical noise. In principle,
classical noise can be made arbitrarily small. For instance, it
has been demonstrated theoretically for a class of electronic
circuits that the extra technical noise originating from the
gain in PT -symmetric arrangements can be made negligibly
small [87].

B. Quantum Noise
In contrast to classical noise, quantum noise may fundamen-
tally limit EP-based sensing. All existing theoretical approaches
[45,90–92] assume the so-called weak dispersive limit, where
frequency shifts are much smaller than the spectral linewidths.
It is worth emphasizing that none of the experiments reviewed
in Section 4 are restricted to this regime. In the theoretical ap-
proaches, it is argued that the frequency splitting is not directly
measured; instead, it is constructed from field measurements
(sampled at various frequencies). Hence, quantum noise limits
apply to the field rather than to frequency splittings. The au-
thors in Ref. [45] have shown with elementary calculations
based on the Schrödinger equation [Eq. (1)] that the field
changes in lowest order are proportional to ε both for DPs
and EPs. Hence, the response at the EP is not parametrically
larger than at a DP (in absolute values, the response at the EP
can be still larger [93]). Without performing any quantum-
noise calculations, one can conclude that EP-based sensors do
not have a superior scaling behavior in terms of the quantum-
limited signal-to-noise ratio.

The full quantum calculations in Refs. [90–92] are based on
Heisenberg–Langevin equations

i
d

dt

0
B@

â1
..
.

ân

1
CA � Ĥ �ε�

0
B@

â1
..
.

ân

1
CA� driving� bath coupling:

(24)

The operator âj is a bosonic annihilation operator for the jth
mode in the second-quantization formalism. Noise enters ad-
ditively via stochastic Langevin terms describing the driving
and coupling of the modes to separate baths. The presence
of the latter is needed for a consistent quantum description
of the dynamics based on the non-Hermitian Hamiltonian
Ĥ �ε�. Using input–output theory, a signal is extracted from
the linear system [Eq. (24)] for which an upper bound of the
signal-to-noise ratio (or the measurement rate) is derived.

The upper bound in Ref. [90] for reciprocal systems is in-
dependent of whether the sensor is at an EP or not. The con-
clusion reached is that EP-based sensors do not have an
advantage in terms of quantum-limited signal-to-noise ratio.
The derived bound is, however, not valid for non-reciprocal
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systems. The authors of Ref. [90] therefore promote non-
reciprocity as a resource for sensing. In contrast, the authors
in Ref. [91] have concluded that EP-based sensing has a more
favorable bound in the quantum regime when using an EP-
based amplifier near its lasing threshold. However, their analysis
is based on a linearization that might be problematic due to
large fluctuations near the EP, as conjectured in Ref. [92].

The first experiment observing quantum limits of EP-based
sensors was done by Wang and coworkers [94]. It is an exten-
sion of their work on Brillouin laser gyroscopes [81]; remember
the discussion in Section 4 and Fig. 3(f ). In strong contrast to
the just-discussed theoretical approaches, the experiment went
well beyond the weak dispersive limit. The key observation is
that the diverging frequency-splitting enhancement of the gyro-
scope is precisely compensated by a diverging broadening of the
laser linewidths; see Fig. 5. The origin of the latter is excess
quantum noise due to the nonorthogonality of the modes.
The linewidth broadening factor is called Petermann factor
[95–98]. Near the EP, the nonorthogonality of the involved

modes becomes extreme and the Petermann factor is therefore
expected to diverge at the EP [99], even though it is difficult to
imagine that this can be observed directly in an experiment.
The experiment and theoretical analysis of Wang et al. have
shown that the quantum-limited signal-to-noise ratio is not
improved for EP-based sensors, at least in this kind of
system.

6. SUMMARY AND OUTLOOK

I have reviewed the progress on exceptional point-based sensors
since the proposal of this concept in 2014 [29]. Such a sensor
exploits the enhanced response of the energy eigenvalues
(frequencies) at an exceptional-point singularity on external
perturbations. Several theoretical studies have broadened the
field of possible applications. Eight proof-of-principle experi-
ments have already demonstrated the potential of such sensors
for particle detection, thermal sensing, thermal mapping, wire-
less sensing, and rotation sensing.

The deleterious influence of classical and quantum noise has
been discussed. Classical noise can lead to a dynamical insta-
bility of exceptional point-based sensors operating at or close to
the real frequency axis, which in turn can spoil the resolvability
via the necessary stabilization [88]. The fundamental limita-
tions due to quantum noise are still under debate. The experi-
ment by Wang et al. has revealed that for laser gyroscopes, the
enhanced splitting is compensated by laser linewidth broaden-
ing due to excess quantum noise [94].

For the future it would be important to have a deeper theo-
retical understanding of nonlinear processes in exceptional
point-based sensors such as gain saturation and laser dynamics;
a first step has been done in (the supplementary material of )
Ref. [80]. This understanding will lead to further improve-
ments of the performance of sensors based on exceptional
points.

While the even more enhanced frequency splittings of third-
order exceptional points have already been experimentally dem-
onstrated [74], it remains to fabricate sensors with exceptional
points of even higher order. This is obviously a challenging task
because of the extreme sensitivity to fabrication tolerances.
A promising approach to overcoming this problem is the
concept of exceptional surfaces [70].

Even though most of the applications of exceptional point-
based sensors will be in the classical domain, it can be expected
that recent and future developments in the study of exceptional
point physics in the quantum domain, see for example
Refs. [89,100], will broaden the range of potential applications
of exceptional point-based sensors.

Acknowledgment. I thank J. Kullig for discussions.

Disclosures. The author declares no conflicts of interest.

REFERENCES
1. W. P. Reinhardt, “Complex coordinates in the theory of atomic and

molecular structure and dynamics,” Ann. Rev. Phys. Chem. 33,
223–255 (1982).

2. C. Keller, M. K. Oberthaler, R. Abfalterer, S. Bernet, J.
Schmiedmayer, and A. Zeilinger, “Tailored complex potentials and

Fig. 5. Fundamental limit of an EP-based laser gyroscope due to
excess quantum noise [94]. (a) Measured stimulated Brillouin laser
(SBL) beating frequency versus pump detuning (which determines
the frequency detuning of the uncoupled SBL modes) for different
locking zones. The inset shows an Allan deviation measurement of
frequency σν versus gate time τ. (b) Measured white frequency noise
of the beating signal determined using the Allan deviation measure-
ment. The linewidth enhancement factor [Petermann factor (PF),
solid curves] and the noise enhancement factor (NEF, dashed curves)
are theoretical predictions. The figure is taken from Ref. [94].

1464 Vol. 8, No. 9 / September 2020 / Photonics Research Review

https://doi.org/10.1146/annurev.pc.33.100182.001255
https://doi.org/10.1146/annurev.pc.33.100182.001255


Friedel’s law in atom optics,” Phys. Rev. Lett. 79, 3327–3330
(1997).

3. M. V. Berry and D. H. J. O’Dell, “Diffraction by volume gratings with
imaginary potentials,” J. Phys. A 31, 2093–2101 (1998).

4. G. L. Celardo and L. Kaplan, “Superradiance transition in one-
dimensional nanostructures: an effective non-Hermitian Hamiltonian
formalism,” Phys. Rev. B 79, 155108 (2009).

5. G. E. Mitchell, A. Richter, and H. A. Weidenmüller, “Randommatrices
and chaos in nuclear physics: nuclear reactions,” Rev. Mod. Phys.
82, 2845–2901 (2010).

6. Y.-K. Lu, P. Peng, Q.-T. Cao, D. Xu, J. Wiersig, Q. Gong, and Y.-F.
Xiao, “Spontaneous T-symmetry breaking and exceptional points
in cavity quantum electrodynamics systems,” Sci. Bull. 63, 1096–
1100 (2018).

7. H.-J. Stöckmann, E. Persson, Y.-H. Kim, M. Barth, U. Kuhl, and I.
Rotter, “Effective Hamiltonian for a microwave billiard with attached
waveguide,” Phys. Rev. E 65, 066211 (2002).

8. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M.
Segev, and D. Kip, “Observation of parity-time symmetry in optics,”
Nat. Phys. 6, 192–195 (2010).

9. J. Wiersig, “Structure of whispering-gallery modes in optical micro-
disks perturbed by nanoparticles,” Phys. Rev. A 84, 063828 (2011).

10. C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian
Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80, 5243–5246
(1998).

11. A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N.
Christodoulides, and U. Peschel, “Parity-time synthetic photonic
lattices,” Nature 488, 167–171 (2012).

12. B. Peng, Ş. K. Özdemir, F. Lei, F. Monfi, M. Gianfreda, G. L. Long, S.
Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric
whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

13. S. Scheel and A. Szameit, “PT-symmetric photonic quantum sys-
tems with gain and loss do not exit,” Eur. Phys. Lett. 122, 34001
(2018).

14. R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, and
D. N. Christodoulides, “Non-Hermitian physics and PT symmetry,”
Nat. Phys. 14, 11–19 (2018).

15. L. Feng, R. El-Ganainy, and L. Ge, “Non-Hermitian photonics based
on parity-time symmetry,” Nat. Photonics 11, 752–762 (2017).

16. T. Kato, Perturbation Theory for Linear Operators (Springer, 1966).
17. W. D. Heiss, “Repulsion of resonance states and exceptional points,”

Phys. Rev. E 61, 929–932 (2000).
18. M. V. Berry, “Physics of nonhermitian degeneracies,” Czech. J.

Phys. 54, 1039–1047 (2004).
19. W. D. Heiss, “Exceptional points of non-Hermitian operators,”

J. Phys. A 37, 2455–2464 (2004).
20. C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H.

Rehfeld, and A. Richter, “Experimental observation of the topological
structure of exceptional points,” Phys. Rev. Lett. 86, 787–790 (2001).

21. C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D.
Heiss, and A. Richter, “Encircling an exceptional point,” Phys. Rev. E
69, 056216 (2004).

22. B. Dietz, T. Friedrich, J. Metz, M. Miski-Oglu, A. Richter, F. Schäfer,
and C. A. Stafford, “Rabi oscillations at exceptional points in micro-
wave billiards,” Phys. Rev. E 75, 027201 (2007).

23. S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S. W. Kim, J.-H.
Lee, and K. An, “Observation of an exceptional point in a chaotic
optical microcavity,” Phys. Rev. Lett. 103, 134101 (2009).

24. J. Zhu, Ş. K. Özdemir, L. He, and L. Yang, “Controlled manipulation
of mode splitting in an optical microcavity by two Rayleigh scatter-
ers,” Opt. Express 18, 23535–23543 (2010).

25. B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz,
J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional
lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113,
6845–6850 (2016).

26. S. Richter, H.-G. Zirnstein, J. Zúñiga-Pérez, E. Krüger, C. Deparis, L.
Trefflich, C. Sturm, B. Rosenow, M. Grundmann, and R. Schmidt-
Grund, “Voigt exceptional points in an anisotropic ZnO-based planar
microcavity: square-root topology, polarization vortices, and circular-
ity,” Phys. Rev. Lett. 123, 227401 (2019).

27. M.-A. Miri and A. Alù, “Exceptional points in optics and photonics,”
Science 363, eaar7709 (2019).

28. Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, “Parity-time symmetry
and exceptional points in photonics,” Nat. Mater. 18, 783–798
(2019).

29. J. Wiersig, “Enhancing the sensitivity of frequency and energy split-
ting detection by using exceptional points: application to microcavity
sensors for single-particle detection,” Phys. Rev. Lett. 112, 203901
(2014).

30. J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L.
Yang, “On-chip single nanoparticle detection and sizing by mode
splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49
(2010).

31. L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single
viruses and nanoparticles using whispering gallery microlasers,”Nat.
Nanotechnol. 6, 428–432 (2011).

32. F. Vollmer and L. Yang, “Label-free detection with high-Q microcav-
ities: a review of biosensing mechanisms for integrated devices,”
Nanophotonics 1, 267–291 (2012).

33. W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W.
Schleich, and M. O. Scully, “The ring laser gyro,”Rev. Mod. Phys. 57,
61–104 (1985).

34. S. Sunada and T. Harayama, “Design of resonant microcavities: ap-
plication to optical gyroscopes,” Opt. Express 15, 16245–16254
(2007).

35. L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and
V. Jacques, “Magnetometry with nitrogen-vacancy defects in dia-
mond,” Rep. Prog. Phys. 77, 056503 (2014).

36. E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez,
R. García, A. San Paulo, M. Calleja, and J. Tamayo,
“Nanomechanical mass sensing and stiffness spectrometry based
on two-dimensional vibrations of resonant nanowires,” Nat.
Nanotechnol. 5, 641–645 (2010).

37. Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennio, “Optical bend sen-
sor based on measurement of resonance mode splitting of long-
period fiber grating,” IEEE Photon. Technol. Lett. 12, 531–533
(2000).

38. J. Wiersig, “Sensors operating at exceptional points: general theory,”
Phys. Rev. A 93, 033809 (2016).

39. J. Wiersig, “Non-Hermitian effects due to asymmetric backscattering
of light in whispering-gallery microcavities,” in Parity-time Symmetry
and Its Applications, D. Christodoulides and J. Yang, eds. (Springer,
2018), pp. 155–184.

40. A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson,
and V. Sandoghdar, “Controlled coupling of counterpropagating
whispering-gallery modes by a single Rayleigh scatterer: a classical
problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603
(2007).

41. J. Wiersig, “Nonorthogonality constraints in open quantum and wave
systems,” Phys. Rev. Res. 1, 033182 (2019).

42. L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of
mode splitting in active optical microcavities,” Phys. Rev. A 82,
053810 (2010).

43. J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric
detection of mode splitting for whispering-gallery mode biosensors,”
Appl. Phys. Lett. 97, 123704 (2010).

44. U. Kuhl, R. Höhmann, J. Main, and H.-J. Stöckmann, “Resonance
widths in open microwave cavities studied by harmonic inversion,”
Phys. Rev. Lett. 100, 254101 (2008).

45. W. Langbein, “No exceptional precision of exceptional-point sen-
sors,” Phys. Rev. A 98, 023805 (2018).

46. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846
(2003).

47. H. Cao and J. Wiersig, “Dielectric microcavities: model systems
for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87,
61–111 (2015).

48. L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer,
W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanopar-
ticles and lentiviruses using microcavity resonance broadening,”
Adv. Mater. 25, 5616–5620 (2013).

Review Vol. 8, No. 9 / September 2020 / Photonics Research 1465

https://doi.org/10.1103/PhysRevLett.79.3327
https://doi.org/10.1103/PhysRevLett.79.3327
https://doi.org/10.1088/0305-4470/31/8/019
https://doi.org/10.1103/PhysRevB.79.155108
https://doi.org/10.1103/RevModPhys.82.2845
https://doi.org/10.1103/RevModPhys.82.2845
https://doi.org/10.1016/j.scib.2018.07.020
https://doi.org/10.1016/j.scib.2018.07.020
https://doi.org/10.1103/PhysRevE.65.066211
https://doi.org/10.1038/nphys1515
https://doi.org/10.1103/PhysRevA.84.063828
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1038/nature11298
https://doi.org/10.1038/nphys2927
https://doi.org/10.1209/0295-5075/122/34001
https://doi.org/10.1209/0295-5075/122/34001
https://doi.org/10.1038/nphys4323
https://doi.org/10.1038/s41566-017-0031-1
https://doi.org/10.1103/PhysRevE.61.929
https://doi.org/10.1023/B:CJOP.0000044002.05657.04
https://doi.org/10.1023/B:CJOP.0000044002.05657.04
https://doi.org/10.1088/0305-4470/37/6/034
https://doi.org/10.1103/PhysRevLett.86.787
https://doi.org/10.1103/PhysRevE.69.056216
https://doi.org/10.1103/PhysRevE.69.056216
https://doi.org/10.1103/PhysRevE.75.027201
https://doi.org/10.1103/PhysRevLett.103.134101
https://doi.org/10.1364/OE.18.023535
https://doi.org/10.1073/pnas.1603318113
https://doi.org/10.1073/pnas.1603318113
https://doi.org/10.1103/PhysRevLett.123.227401
https://doi.org/10.1126/science.aar7709
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1103/PhysRevLett.112.203901
https://doi.org/10.1103/PhysRevLett.112.203901
https://doi.org/10.1038/nphoton.2009.237
https://doi.org/10.1038/nphoton.2009.237
https://doi.org/10.1038/nnano.2011.99
https://doi.org/10.1038/nnano.2011.99
https://doi.org/10.1515/nanoph-2012-0021
https://doi.org/10.1103/RevModPhys.57.61
https://doi.org/10.1103/RevModPhys.57.61
https://doi.org/10.1364/OE.15.016245
https://doi.org/10.1364/OE.15.016245
https://doi.org/10.1088/0034-4885/77/5/056503
https://doi.org/10.1038/nnano.2010.151
https://doi.org/10.1038/nnano.2010.151
https://doi.org/10.1109/68.841276
https://doi.org/10.1109/68.841276
https://doi.org/10.1103/PhysRevA.93.033809
https://doi.org/10.1103/PhysRevLett.99.173603
https://doi.org/10.1103/PhysRevLett.99.173603
https://doi.org/10.1103/PhysRevResearch.1.033182
https://doi.org/10.1103/PhysRevA.82.053810
https://doi.org/10.1103/PhysRevA.82.053810
https://doi.org/10.1063/1.3494530
https://doi.org/10.1103/PhysRevLett.100.254101
https://doi.org/10.1103/PhysRevA.98.023805
https://doi.org/10.1038/nature01939
https://doi.org/10.1038/nature01939
https://doi.org/10.1103/RevModPhys.87.61
https://doi.org/10.1103/RevModPhys.87.61
https://doi.org/10.1002/adma201302572


49. J. Wiersig, S. W. Kim, and M. Hentschel, “Asymmetric scattering and
nonorthogonal mode patterns in optical microspirals,” Phys. Rev. A
78, 053809 (2008).

50. J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara, M.
Hentschel, and H. Schomerus, “Nonorthogonal pairs of copropagat-
ing optical modes in deformed microdisk cavities,” Phys. Rev. A 84,
023845 (2011).

51. J. Wiersig, “Chiral and nonorthogonal eigenstate pairs in open quan-
tum systems with weak backscattering between counterpropagating
traveling waves,” Phys. Rev. A 89, 012119 (2014).

52. S. Liu, J. Wiersig, W. Sun, Y. Fan, L. Ge, J. Yang, S. Xiao, Q. Song,
and H. Cao, “Transporting the optical chirality through the dynamical
barriers in optical microcavities,” Laser Photon. Rev. 12, 1800027
(2018).

53. W. D. Heiss and H. L. Harney, “The chirality of exceptional points,”
Eur. Phys. J. D 17, 149–151 (2001).

54. C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D.
Heiss, and A. Richter, “Observation of a chiral state in a microwave
cavity,” Phys. Rev. Lett. 90, 034101 (2003).

55. C. Wang, X. Jiang, G. Zhao, M. Zhang, C. W. Hsu, B. Peng, A. D.
Stone, and L. Yang, “Electromagnetically induced transparency at a
chiral exceptional point,” Nat. Phys. 16, 334–340 (2020).

56. J. Kullig and J. Wiersig, “High-order exceptional points of counterpro-
pagating waves in weakly deformed microdisk cavities,” Phys. Rev.
A 100, 043837 (2019).

57. J. Kullig, M. Yi, C.-H. Hentschel, and J. Wiersig, “Exceptional points
of third-order in a layered optical microdisk cavity,” New J. Phys. 20,
083016 (2018).

58. A. Hassan, H. Hodaei, W. Hayenga, M. Khajavikhan, and D.
Christodoulides, “Enhanced sensitivity in parity-time-symmetric mi-
crocavity sensors,” in Advanced Photonics, OSA Technical Digest
(online) (Optical Society of America, 2015), paper SeT4C.3.

59. W. Chen, J. Zhang, B. Peng, Ş. K. Özdemir, X. Fan, and L. Yang,
“Parity-time-symmetric whispering-gallery mode nanoparticle sen-
sor,” Photon. Res. 6, A23–A30 (2018).

60. S. Zhang, Z. Yong, Y. Zhang, and S. He, “Parity-time symmetry
breaking in coupled nanobeam cavities,” Sci. Rep. 6, 24487 (2015).

61. Z.-P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X.-Y. Lü, C.-W.
Li, L. Yang, F. Nori, and Y.-X. Liu, “Metrology with PT-symmetric
cavities: enhanced sensitivity near the PT-phase transition,” Phys.
Rev. Lett. 117, 110802 (2016).

62. J. Ren, H. Hodaei, G. Harari, A. U. Hassan, W. Chow, M. Soltani,
D. Christodoulides, and M. Khajavikhan, “Ultrasensitive micro-
scale parity-time-symmetric ring laser gyroscope,” Opt. Lett. 42,
1556–1559 (2017).

63. S. Sunada, “Large Sagnac frequency splitting in a ring resonator op-
erating at an exceptional point,” Phys. Rev. A 96, 033842 (2017).

64. R. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating optical microcav-
ities with broken chiral symmetry,” Phys. Rev. Lett. 114, 053903
(2015).

65. B. Jin, W. Tan, C. Zhang, J. Wu, J. Chen, S. Zhang, and P. Wu,
“High-performance terahertz sensing at exceptional points in a bi-
layer structure,” Adv. Theory Simul. 1, 1800070 (2018).

66. A. Jian, F. Liu, G. Bai, B. Zhang, Y. Zhang, Q. Zhang, X. Xue, S.
Sang, and X. Zhang, “Parity-time symmetry based on resonant op-
tical tunneling effect for biosensing,” Opt. Commun. 475, 125815
(2020).

67. M. Goryachev, B. McAllister, and M. E. Tobar, “Probing dark universe
with exceptional points,” Phys. Dark Univ. 23, 100244 (2018).

68. J. Liu, L. Chen, and K.-D. Zhu, “Enhanced sensing of non-Newtonian
effects at ultrashort range with exceptional points in optomechanical
systems,” arXiv:191205732 (2019).

69. J. Liu, L. Chen, F. He, and K.-D. Zhu, “Gravitational waves detection
with exceptional points in micro cavities,” arXiv:2001.09462 (2019).

70. Q. Zhong, J. Ren, M. Khajavikhan, D. N. Christodoulides, Ş. K.
Özdemir, and R. El-Ganainy, “Sensing with exceptional surfaces
in order to combine sensitivity with robustness,” Phys. Rev. Lett.
122, 153902 (2019).

71. Q. Zhong, S. Nelson, Ş. K. Özdemir, and R. El-Ganainy, “Controlling
direction absorption with chiral exceptional surfaces,” Opt. Lett. 44,
5242–5245 (2019).

72. S. Wang, B. Hou, W. Lu, Y. Chen, Z. Q. Zhang, and C. T. Chan,
“Arbitrary order exceptional point induced by photonic spin-orbit
interaction in coupled resonators,” Nat. Commun. 10, 832 (2019).

73. W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang,
“Exceptional points enhance sensing in an optical microcavity,”
Nature 548, 192–196 (2017).

74. H. Hodaei, A. Hassan, S. Wittek, H. Carcia-Cracia, R. El-Ganainy,
D. Christodoulides, and M. Khajavikhan, “Enhanced sensitivity at
higher-order exceptional points,” Nature 548, 187–191 (2017).

75. H. Zhao, Z. Chen, R. Zhao, and L. Feng, “Exceptional points engi-
neered glass slide for microscopic thermal mapping,” Nat. Commun.
9, 1764 (2018).

76. M. Sakhdari, M. Hajizadegan, Y. Li, M. M.-C. Cheng, J. C. H. Hung,
and P.-Y. Chen, “Ultrasensitive, parity-time-symmetric wireless reac-
tive and resistive sensors,” IEEE Sens. J. 18, 9548–9555 (2018).

77. P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng,
R. El-Ganainy, and A. Alù, “Generalized parity-time symmetry con-
dition for enhanced sensor telemetry,” Nat. Electron. 1, 297–304
(2018).

78. Z. Dong, Z. Li, F. Yang, C.-W. Qiu, and J. S. Ho, “Sensitive readout of
implantable microsensors using a wireless system locked to an ex-
ceptional point,” Nat. Electron. 2, 335–342 (2019).

79. C. Zeng, Y. Sun, G. Li, Y. Li, H. Jiang, Y. Yang, and H. Chen,
“Enhanced sensitivity at high-order exceptional points in a passive
wireless sensing system,” Opt. Express 27, 27562–27572 (2019).

80. M. P. Hokmabadi, A. Schumer, D. N. Christodoulides, and M.
Khajavikhan, “Non-Hermitian ring laser gyroscopes with enhanced
Sagnac sensitivity,” Nature 576, 70–74 (2019).

81. Y.-H. Lai, Y.-K. Lu, M.-G. Suh, Z. Yuan, and K. Vahala, “Observation
of the exceptional-point-enhanced Sagnac effect,” Nature 576,
65–69 (2019).

82. J. Miller, “Exceptional points make for exceptional sensors,” Phys.
Today 70, 23–26 (2017).

83. L. Ge, Y. D. Chong, and A. D. Stone, “Conservation relations and
anisotropic transmission resonances in one-dimensional PT-
symmetric photonic heterostructures,” Phys. Rev. A 85, 023802
(2012).

84. J.-H. Park, A. Ndao, L. Hsu, A. Kodigala, T. Lepetit, Y.-H. Lo, and B.
Kanté, “Symmetry-breaking-induced plasmonic exceptional points
and nanoscale sensing,” Nat. Phys. 16, 462–468 (2020).

85. N. A. Mortensen, P. A. D. Gonçalves, M. Khajavikhan, D. N.
Christodoulides, C. Tserkezis, and C. Wolff, “Fluctuations and
noise-limited sensing near the exceptional point of parity-time-
symmetric resonator systems,” Optica 5, 1342–1346 (2018).

86. C. Wolff, C. Tserkezis, and N. A. Mortensen, “On the time evolution
at a fluctuating exceptional point,” Nanophotonics 8, 1319–1326
(2019).

87. Z. Xiao, H. Li, T. Kottos, and A. Alù, “Enhanced sensing and nonde-
graded thermal noise performance based on PT-symmetric elec-
tronic circuits with a sixth-order exceptional point,” Phys. Rev.
Lett. 123, 213901 (2019).

88. J. Wiersig, “Robustness of exceptional-point-based sensors against
parametric noise: the role of Hamiltonian and Liouvillian degenera-
cies,” Phys. Rev. A 101, 053846 (2020).

89. F. Minganti, A. Miranowicz, R. W. Chhajlany, and F. Nori, “Quantum
exceptional points of non-Hermitian Hamiltonians and Liouvillians:
the effects of quantum jumps,” Phys. Rev. A 100, 062131 (2019).

90. H.-K. Lau and A. A. Clerk, “Fundamental limits and non-reciprocal
approaches in non-Hermitian quantum sensing,” Nat. Commun. 9,
4320 (2018).

91. M. Zhang, W. Sweeney, C. W. Hsu, L. Yang, A. D. Stone, and L.
Jiang, “Quantum noise theory of exceptional point amplifying sen-
sors,” Phys. Rev. Lett. 123, 180501 (2019).

92. C. Chen, L. Jin, and R.-B. Liu, “Sensitivity of parameter estimation
near the exceptional point of a non-Hermitian system,” New J.
Phys. 21, 083002 (2019).

93. S. Sunada, “Enhanced response of non-Hermitian photonic systems
near exceptional points,” Phys. Rev. A 97, 043804 (2018).

94. H. Wang, Y.-H. Lai, Z. Yuan, M.-G. Suh, and K. Vahala, “Petermann-
factor sensitivity limit near an exceptional point in a Brillouin ring laser
gyroscope,” Nat. Commun. 11, 1610 (2020).

1466 Vol. 8, No. 9 / September 2020 / Photonics Research Review

https://doi.org/10.1103/PhysRevA.78.053809
https://doi.org/10.1103/PhysRevA.78.053809
https://doi.org/10.1103/PhysRevA.84.023845
https://doi.org/10.1103/PhysRevA.84.023845
https://doi.org/10.1103/PhysRevA.89.012119
https://doi.org/10.1002/lpor.201800027
https://doi.org/10.1002/lpor.201800027
https://doi.org/10.1007/s100530170017
https://doi.org/10.1103/PhysRevLett.90.034101
https://doi.org/10.1038/s41567-019-0746-7
https://doi.org/10.1103/PhysRevA.100.043837
https://doi.org/10.1103/PhysRevA.100.043837
https://doi.org/10.1088/1367-2630/aad594
https://doi.org/10.1088/1367-2630/aad594
https://doi.org/10.1364/PRJ.6.000A23
https://doi.org/10.1038/srep24487
https://doi.org/10.1103/PhysRevLett.117.110802
https://doi.org/10.1103/PhysRevLett.117.110802
https://doi.org/10.1364/OL.42.001556
https://doi.org/10.1364/OL.42.001556
https://doi.org/10.1103/PhysRevA.96.033842
https://doi.org/10.1103/PhysRevLett.114.053903
https://doi.org/10.1103/PhysRevLett.114.053903
https://doi.org/10.1002/adts.201800070
https://doi.org/10.1016/j.optcom.2020.125815
https://doi.org/10.1016/j.optcom.2020.125815
https://doi.org/10.1016/j.dark.2018.11.005
https://doi.org/10.1103/PhysRevLett.122.153902
https://doi.org/10.1103/PhysRevLett.122.153902
https://doi.org/10.1364/OL.44.005242
https://doi.org/10.1364/OL.44.005242
https://doi.org/10.1038/s41467-019-08826-6
https://doi.org/10.1038/nature23281
https://doi.org/10.1038/nature23280
https://doi.org/10.1038/s41467-018-04251-3
https://doi.org/10.1038/s41467-018-04251-3
https://doi.org/10.1109/JSEN.2018.2870322
https://doi.org/10.1038/s41928-018-0072-6
https://doi.org/10.1038/s41928-018-0072-6
https://doi.org/10.1038/s41928-019-0284-4
https://doi.org/10.1364/OE.27.027562
https://doi.org/10.1038/s41586-019-1780-4
https://doi.org/10.1038/s41586-019-1777-z
https://doi.org/10.1038/s41586-019-1777-z
https://doi.org/10.1063/PT.3.3717
https://doi.org/10.1063/PT.3.3717
https://doi.org/10.1103/PhysRevA.85.023802
https://doi.org/10.1103/PhysRevA.85.023802
https://doi.org/10.1038/s41567-020-0796-x
https://doi.org/10.1364/OPTICA.5.001342
https://doi.org/10.1515/nanoph-2019-0036
https://doi.org/10.1515/nanoph-2019-0036
https://doi.org/10.1103/PhysRevLett.123.213901
https://doi.org/10.1103/PhysRevLett.123.213901
https://doi.org/10.1103/PhysRevA.101.053846
https://doi.org/10.1103/PhysRevA.100.062131
https://doi.org/10.1038/s41467-018-06477-7
https://doi.org/10.1038/s41467-018-06477-7
https://doi.org/10.1103/PhysRevLett.123.180501
https://doi.org/10.1088/1367-2630/ab32ab
https://doi.org/10.1088/1367-2630/ab32ab
https://doi.org/10.1103/PhysRevA.97.043804
https://doi.org/10.1038/s41467-020-15341-6


95. K. Petermann, “Calculated spontaneous emission factor for double-
heterostructure injection lasers with gain-induced waveguiding,”
IEEE J. Quantum Electron. 15, 566–570 (1979).

96. A. E. Siegman, “Excess spontaneous emission in non-Hermitian opti-
cal systems. I. Laser amplifiers,” Phys. Rev. A 39, 1253–1263 (1989).

97. A. E. Siegman, “Excess spontaneous emission in non-Hermitian op-
tical systems. II. Laser oscillators,” Phys. Rev. A 39, 1264–1268
(1989).

98. H. Schomerus, “Excess quantum noise due to mode orthogo-
nality in dielectric microresonators,” Phys. Rev. A 79, 061801
(2009).

99. M. V. Berry, “Mode degeneracies and the Petermann excess-noise
factor for unstable lasers,” J. Mod. Opt. 50, 63–81 (2003).

100. M. Naghiloo, M. Abbasi, Y. N. Joglekar, and K. W. Murch, “Quantum
state tomography across the exceptional point in a single dissipative
qubit,” Nat. Phys. 15, 1232–1236 (2019).

Review Vol. 8, No. 9 / September 2020 / Photonics Research 1467

https://doi.org/10.1109/JQE.1979.1070064
https://doi.org/10.1103/PhysRevA.39.1253
https://doi.org/10.1103/PhysRevA.39.1264
https://doi.org/10.1103/PhysRevA.39.1264
https://doi.org/10.1103/PhysRevA.79.061801
https://doi.org/10.1103/PhysRevA.79.061801
https://doi.org/10.1080/09500340308234532
https://doi.org/10.1038/s41567-019-0652-z

	XML ID funding

