• Photonics Research
  • Vol. 10, Issue 5, 1162 (2022)
Jia-Lu Zhu1, Ren-Chao Jin1, Li-Li Tang1, Zheng-Gao Dong1、*, Jia-Qi Li1、2, and Jin Wang1
Author Affiliations
  • 1School of Physics, Southeast University, Nanjing 211189, China
  • 2e-mail: lijq@seu.edu.cn
  • show less
    DOI: 10.1364/PRJ.449474 Cite this Article Set citation alerts
    Jia-Lu Zhu, Ren-Chao Jin, Li-Li Tang, Zheng-Gao Dong, Jia-Qi Li, Jin Wang. Multidimensional trapping by dual-focusing cylindrical vector beams with all-silicon metalens[J]. Photonics Research, 2022, 10(5): 1162 Copy Citation Text show less
    References

    [1] E. Otte, C. Denz. Optical trapping gets structure: structured light for advanced optical manipulation. Appl. Phys. Rev., 7, 041308(2020).

    [2] J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, J. Tian. Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces. Adv. Funct. Mater., 25, 704-710(2015).

    [3] Q. W. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon., 1, 1-57(2009).

    [4] X. Li, T. H. Lan, C. H. Tien, M. Gu. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat. Commun., 3, 998(2012).

    [5] N. Bhebhe, C. Rosales-Guzmán, A. Forbes. Classical and quantum analysis of propagation invariant vector flat-top beams. Appl. Opt., 57, 5451-5458(2018).

    [6] Y. Zhao, Q. Zhan, Y. Zhang, Y.-P. Li. Creation of a three-dimensional optical chain for controllable particle delivery. Opt. Lett., 30, 848-850(2005).

    [7] R. Chen, K. Agarwal, C. J. R. Sheppard, X. D. Chen. Imaging using cylindrical vector beams in a high-numerical-aperture microscopy system. Opt. Lett., 38, 3111-3114(2013).

    [8] M. Yoshid, Y. Kozawa, S. Sato. Subtraction imaging by the combination of higher-order vector beams for enhanced spatial resolution. Opt. Lett., 44, 883-886(2019).

    [9] S. Segawa, Y. Kozawa, S. Sato. Resolution enhancement of confocal microscopy by subtraction method with vector beams. Opt. Lett., 39, 3118-3121(2014).

    [10] S. Segawa, Y. Kozawa, S. Sato. Demonstration of subtraction imaging in confocal microscopy with vector beams. Opt. Lett., 39, 4529-4532(2014).

    [11] F. Töppel, A. Aiello, C. Marquardt, E. Giacobino, G. Leuchs. Classical entanglement in polarization metrology. New J. Phys., 16, 073019(2014).

    [12] S. Berg-Johansen, F. Töppel, B. Stiller, P. Banzer, M. Ornigotti, E. Giacobino, G. Leuchs, A. Aiello, C. Marquardt. Classically entangled optical beams for high-speed kinematic sensing. Optica, 2, 864-868(2015).

    [13] M. Neugebauer, P. Wozniak, A. Bag, G. Leuchs, P. Banzer. Polarization-controlled directional scattering for nanoscopic position sensing. Nat. Commun., 7, 11286(2016).

    [14] B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzmán, A. Forbes. Creation and detection of vector vortex modes for classical and quantum communication. J. Lightwave Technol., 36, 292-301(2018).

    [15] G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, R. R. Alfano. Using the nonseparability of vector beams to encode information for optical communication. Opt. Lett., 40, 4887-4890(2015).

    [16] V. D’Ambrosio, G. Carvacho, F. Graffitti, C. Vitelli, B. Piccirillo, L. Marrucci, F. Sciarrino. Entangled vector vortex beams. Phys. Rev. A, 94, 030304(2016).

    [17] J. Liu, S. M. Li, L. Zhu, A. D. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Y. Yu, X. L. Cai, J. Wang. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light Sci. Appl., 7, 17148(2018).

    [18] D. Chen, S.-H. Zhao, L. Shi, Y. Liu. Measurement-device-independent quantum key distribution with pairs of vector vortex beams. Phys. Rev. A, 93, 032320(2016).

    [19] M. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics, 1, 97-105(2007).

    [20] W. He, M. Tong, Z. Xu, Y. Hu, X. A. Cheng, T. Jiang. Ultrafast all-optical terahertz modulation based on an inverse-designed metasurface. Photon. Res., 9, 1099-1108(2021).

    [21] E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. D. Miller, F. X. Kärtner. Terahertz-driven linear electron acceleration. Nat. Commun., 6, 8486(2015).

    [22] J. A. Deibel, K. Wang, M. D. Escarra, D. M. Mittleman. Enhanced coupling of terahertz radiation to cylindrical wire waveguides. Opt. Express, 14, 279-290(2006).

    [23] S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs. Focusing light to a tighter spot. Opt. Commun., 179, 1-7(2000).

    [24] M. Michihata, T. Hayashi, Y. Takaya. Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam. Appl. Opt., 48, 6143-6151(2009).

    [25] R. Zuo, W. Liu, H. Cheng, S. Chen, J. Tian. Breaking the diffraction limit with radially polarized light based on dielectric metalenses. Adv. Opt. Mater., 6, 1800795(2018).

    [26] F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, X. Chen. Vector vortex beam generation with a single plasmonic metasurface. ACS Photon., 3, 1558-1563(2016).

    [27] Y. Kozawa, S. Sato. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams. Opt. Express, 18, 10828-10833(2010).

    [28] S. E. Skelton, M. Sergides, R. Saija, M. A. Iatì, O. M. Maragó, P. H. Jones. Trapping volume control in optical tweezers using cylindrical vector beams. Opt. Lett., 38, 28-30(2013).

    [29] M. G. Donato, S. Vasi, R. Sayed, P. H. Jones, F. Bonaccorso, A. C. Ferrari, P. G. Gucciardi, O. M. Maragó. Optical trapping of nanotubes with cylindrical vector beams. Opt. Lett., 37, 3381-3383(2012).

    [30] S. Quabis, R. Dorn, G. Leuchs. Generation of a radially polarized doughnut mode of high quality. Appl. Phys. B, 81, 597-600(2005).

    [31] G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel. Efficient extracavity generation of radially and azimuthally polarized beams. Opt. Lett., 32, 1468-1470(2007).

    [32] Z. Bomzon, V. Kleiner, E. Hasman. Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt. Lett., 26, 1424-1426(2001).

    [33] Z. Bomzon, G. Biener, V. Kleiner, E. Hasman. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt. Lett., 27, 285-287(2002).

    [34] Y. Liu, X. Zhang. Metamaterials: a new frontier of science and technology. Chem. Soc. Rev., 40, 2494-2507(2011).

    [35] D. Lee, S. So, G. Hu, M. Kim, T. Badloe, H. Cho, J. Kim, H. Kim, C. Qiu, J. Rho. Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. eLight, 2, 1(2022).

    [36] Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, J. G. Tian. Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle. ACS Photon., 4, 2061-2069(2017).

    [37] B. Bai, Y. Svirko, J. Turunen, T. Vallius. Optical activity in planar chiral metamaterials: theoretical study. Phys. Rev. A, 76, 023811(2007).

    [38] A. Drezet, C. Genet, J.-Y. Laluet, T. W. Ebbesen. Optical chirality without optical activity: how surface plasmons give a twist to light. Opt. Express, 16, 12559-12570(2008).

    [39] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [40] E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, A. Faraon. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica, 3, 628-633(2016).

    [41] G. Zheng, H. Muehlenbernd, M. Kenney, G. Li, T. Zentgraf, S. Zhang. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [42] J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, F. Capasso. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 118, 113901(2017).

    [43] T. Li, X. Xu, B. Fu, S. Wang, B. Li, Z. Wang, S. Zhu. Integrating the optical tweezers and spanner onto an individual single-layer metasurface. Photon. Res., 9, 1062-1068(2021).

    [44] S. Gao, C. S. Park, S. S. Lee, D. Y. Choi. All-dielectric metasurface for simultaneously realizing polarization rotation and wavefront shaping for visible light. Nanoscale, 11, 4083-4090(2019).

    [45] Y. Hu, X. Wang, X. Luo, X. Ou, L. Li, Y. Chen, Y. Ping, S. Wang, H. Duan. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications. Nanophotonics, 9, 3755-3780(2020).

    [46] D. Wang, T. Liu, Y. Zhou, X. Zheng, S. Sun, Q. He, L. Zhou. High-efficiency metadevices for bifunctional generations of vectorial optical fields. Nanophotonics, 10, 685-695(2020).

    [47] W. Shu, Y. Liu, Y. Ke, X. Ling, Z. Liu, B. Huang, H. Luo, X. Yin. Propagation model for vector beams generated by metasurfaces. Opt. Express, 24, 21177-21189(2016).

    [48] Y. Liu, Y. Ke, J. Zhou, Y. Liu, H. Luo, S. Wen, D. Fan. Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements. Sci. Rep., 7, 44096(2017).

    [49] F. Zhang, H. Yu, J. Fang, M. Zhang, S. Chen, J. Wang, A. He, J. Chen. Efficient generation and tight focusing of radially polarized beam from linearly polarized beam with all-dielectric metasurface. Opt. Express, 24, 6656-6664(2016).

    [50] C. Zheng, J. Li, G. Wang, S. Wang, J. Li, H. Zhao, H. Zang, Y. Zhang, Y. Zhang, J. Yao. Fine manipulation of terahertz waves via all-silicon metasurfaces with an independent amplitude and phase. Nanoscale, 13, 5809-5816(2021).

    [51] S. Gao, C. Park, C. Zhou, S. Lee, D. Choi. Twofold polarization-selective all-dielectric trifoci metalens for linearly polarized visible light. Adv. Opt. Mater., 7, 1900883(2019).

    [52] R. Jin, L. Tang, J. Li, J. Wang, Q. Wang, Y. Liu, Z.-G. Dong. Experimental demonstration of multidimensional and multifunctional metalenses based on photonic spin Hall effect. ACS Photon., 7, 512-518(2020).

    [53] L. Tang, R. Jin, Y. Cao, J. Li, J. Wang, Z. G. Dong. Spin-dependent dual-wavelength multiplexing metalens. Opt. Lett., 45, 5258-5261(2020).

    [54] Y. Xu, H. Zhang, Q. Li, X. Zhang, Q. Xu, W. Zhang, C. Hu, X. Zhang, J. Han, W. Zhang. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control. Nanophotonics, 9, 3393-3402(2020).

    [55] I. D. Stoev, B. Seelbinder, E. Erben, N. Maghelli, M. Kreysing. Highly sensitive force measurements in an optically generated, harmonic hydrodynamic trap. eLight, 1, 7(2021).

    [56] H. Li, Y. Y. Cao, L. M. Zhou, X. H. Xu, T. T. Zhu, Y. Z. Shi, C. W. Qiu, W. Q. Ding. Optical pulling forces and their applications. Adv. Opt. Photon., 12, 288-366(2020).

    [57] D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, C. W. Qiu. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl., 6, e17039(2017).

    [58] T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop. Forces in optical tweezers with radially and azimuthally polarized trapping beams. Opt. Lett., 33, 122-124(2008).

    Jia-Lu Zhu, Ren-Chao Jin, Li-Li Tang, Zheng-Gao Dong, Jia-Qi Li, Jin Wang. Multidimensional trapping by dual-focusing cylindrical vector beams with all-silicon metalens[J]. Photonics Research, 2022, 10(5): 1162
    Download Citation