• Journal of Inorganic Materials
  • Vol. 37, Issue 12, 1337 (2022)
Jia CAI*, Gaoxu HUANG, Xiaopan JIN, Chi WEI, Jiayi MAO, and Yongsheng LI
DOI: 10.15541/jim20220208 Cite this Article
Jia CAI, Gaoxu HUANG, Xiaopan JIN, Chi WEI, Jiayi MAO, Yongsheng LI. In-situ Modification of Carbon Nanotubes with Metallic Bismuth Nanoparticles for Uniform Lithium Deposition[J]. Journal of Inorganic Materials, 2022, 37(12): 1337 Copy Citation Text show less
References

[1] B DUNN, H KAMATH, J M TARASCON. Electrical energy storage for the grid: a battery of choices. Science, 928-935(2011).

[2] J QIAN, W A HENDERSON, W XU et al. High rate and stable cycling of lithium metal anode. Nature Communications, 6362(2015).

[3] B HE, Z RAO, Z CHENG et al. Rationally design a sulfur cathode with solid-phase conversion mechanism for high cycle-stable Li-S batteries. Advanced Energy Materials, 2003690(2021). https://onlinelibrary.wiley.com/doi/10.1002/aenm.202003690

[4] W B JUNG, H PARK, J S JANG et al. Polyelemental nanoparticles as catalysts for a Li-O2 battery. ACS nano, 4235-4244(2021). https://pubs.acs.org/doi/10.1021/acsnano.0c06528

[5] K N WOOD, E KAZYAK, A F CHADWICK et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Central Science, 790-801(2016).

[6] A J SANCHEZ, E KAZYAK, Y CHEN et al. Plan-view operando video microscopy of Li metal anodes: identifying the coupled relationships among nucleation, morphology, and reversibility. ACS Energy Letters, 994-1004(2020). https://pubs.acs.org/doi/10.1021/acsenergylett.0c00215

[7] D AURBACH. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources, 206-218(2000). https://linkinghub.elsevier.com/retrieve/pii/S0378775300004316

[8] X B CHENG, R ZHANG, C Z ZHAO et al. A review of solid electrolyte interphases on lithium metal anode. Advanced Science, 1500213(2016). https://onlinelibrary.wiley.com/doi/10.1002/advs.201500213

[9] X SHEN, Y LI, T QIAN et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nature Communications, 900(2019).

[10] R XU, X Q ZHANG, X B CHENG et al. Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Advanced Functional Materials, 1705838(2018). https://onlinelibrary.wiley.com/doi/10.1002/adfm.201705838

[11] Y LIU, Q LIU, L XIN et al. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nature Energy, 17083(2017). https://www.nature.com/articles/nenergy201783

[12] K XU. Electrolytes and interphases in Li-ion batteries and beyond. Chemical Reviews, 11503-11618(2014).

[13] S HUANG, W ZHANG, H MING et al. Chemical energy release driven lithiophilic layer on 1 m2 commercial brass mesh toward highly stable lithium metal batteries. Nano Letters, 1832-1837(2019). https://pubs.acs.org/doi/10.1021/acs.nanolett.8b04919

[14] F PEI, A FU, W YE et al. Robust lithium metal anodes realized by lithiophilic 3D porous current collectors for constructing high-energy lithium-sulfur batteries. ACS Nano, 8337-8346(2019).

[15] K YAN, Z LU, H W LEE et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nature Energy, 16010(2016). https://doi.org/10.1038/nenergy.2016.10

[16] A PEI, G ZHENG, F SHI et al. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Letters, 1132-1139(2017).

[17] Y ZHANG, W LUO, C WANG et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proceedings of the National Academy of Sciences, 3584-3589(2017). https://pnas.org/doi/full/10.1073/pnas.1618871114

[18] H QIU, T TANG, M ASIF et al. 3D porous Cu current collectors derived by hydrogen bubble dynamic template for enhanced Li metal anode performance. Advanced Functional Materials, 1808468(2019). https://onlinelibrary.wiley.com/doi/10.1002/adfm.201808468

[19] Z HU, Z LI, Z XIA et al. PECVD-derived graphene nanowall/ lithium composite anodes towards highly stable lithium metal batteries. Energy Storage Materials, 29-39(2019). https://linkinghub.elsevier.com/retrieve/pii/S2405829718313643

[20] G HOU, Q SUN, Q AI et al. Growth direction control of lithium dendrites in a heterogeneous lithiophilic host for ultra-safe lithium metal batteries. Journal of Power Sources, 141-147(2019). https://linkinghub.elsevier.com/retrieve/pii/S0378775319300849

[21] F ZHANG, X LIU, M YANG et al. Novel S-doped ordered mesoporous carbon nanospheres toward advanced lithium metal anodes. Nano Energy, 104443(2020). https://linkinghub.elsevier.com/retrieve/pii/S2211285519311607

[22] Y HE, H XU, J SHI et al. Polydopamine coating layer modified current collector for dendrite-free Li metal anode. Energy Storage Materials, 418-426(2019). https://linkinghub.elsevier.com/retrieve/pii/S2405829719302764

[23] D ZHANG, A DAI, M WU et al. Lithiophilic 3D porous CuZn current collector for stable lithium metal batteries. ACS Energy Letters, 180-186(2019). https://pubs.acs.org/doi/10.1021/acsenergylett.9b01987

[24] Y NAN, S LI, C HAN et al. Interlamellar lithium-ion conductor reformed interface for high performance lithium metal anode. Advanced Functional Materials, 2102336(2021). https://onlinelibrary.wiley.com/doi/10.1002/adfm.202102336

[25] Y LIU, X WU, C NIU et al. Systematic evaluation of carbon hosts for high-energy rechargeable lithium-metal batteries. ACS Energy Letters, 1550-1559(2021).

[26] H LIU, E WANG, Q ZHANG et al. Unique 3D nanoporous/ macroporous structure Cu current collector for dendrite-free lithium deposition. Energy Storage Materials, 253-259(2019). https://linkinghub.elsevier.com/retrieve/pii/S2405829718306639

[27] K LIN, T LI, S W CHIANG et al. Facile synthesis of ant-nest-like porous duplex copper as deeply cycling host for lithium metal anodes. Small, 2001784(2020). https://onlinelibrary.wiley.com/doi/10.1002/smll.202001784

[28] D YANG, C ZHAO, R LIAN et al. Mechanisms of the planar growth of lithium metal enabled by the 2D lattice confinement from a Ti3C2Tx MXene intermediate layer. Advanced Functional Materials, 2010987(2021). https://onlinelibrary.wiley.com/doi/10.1002/adfm.202010987

[29] W ZHANG, H L ZHUANG, L FAN et al. A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries. Science Advances, eaar4410(2018). https://www.science.org/doi/10.1126/sciadv.aar4410

[30] A FU, C WANG, J PENG et al. Lithiophilic and antioxidative copper current collectors for highly stable lithium metal batteries. Advanced Functional Materials, 2009805(2021). https://onlinelibrary.wiley.com/doi/10.1002/adfm.202009805

Jia CAI, Gaoxu HUANG, Xiaopan JIN, Chi WEI, Jiayi MAO, Yongsheng LI. In-situ Modification of Carbon Nanotubes with Metallic Bismuth Nanoparticles for Uniform Lithium Deposition[J]. Journal of Inorganic Materials, 2022, 37(12): 1337
Download Citation