• Photonics Research
  • Vol. 8, Issue 6, 1023 (2020)
Pablo Yepiz-Graciano1, Alí Michel Angulo Martínez1, Dorilian Lopez-Mago2、3、*, Hector Cruz-Ramirez1, and Alfred B. U’Ren1、4、*
Author Affiliations
  • 1Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70-543, Ciudad de México 04510, Mexico
  • 2Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
  • 3e-mail: dlopezmago@tec.mx
  • 4e-mail: alfred.uren@correo.nucleares.unam.mx
  • show less
    DOI: 10.1364/PRJ.388693 Cite this Article Set citation alerts
    Pablo Yepiz-Graciano, Alí Michel Angulo Martínez, Dorilian Lopez-Mago, Hector Cruz-Ramirez, Alfred B. U’Ren. Spectrally resolved Hong–Ou–Mandel interferometry for quantum-optical coherence tomography[J]. Photonics Research, 2020, 8(6): 1023 Copy Citation Text show less
    References

    [1] N. Gisin, R. Thew. Quantum communication. Nat. Photonics, 1, 165-171(2007).

    [2] P.-A. Moreau, E. Toninelli, T. Gregory, M. J. Padgett. Imaging with quantum states of light. Nat. Rev. Phys., 1, 367-380(2019).

    [3] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien. Quantum computers. Nature, 464, 45-53(2010).

    [4] C. K. Hong, Z. Y. Ou, L. Mandel. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett., 59, 2044-2046(1987).

    [5] C. Agnesi, B. Da Lio, D. Cozzolino, L. Cardi, B. Ben Bakir, K. Hassan, A. Della Frera, A. Ruggeri, A. Giudice, G. Vallone, P. Villoresi, A. Tosi, K. Rottwitt, Y. Ding, D. Bacco. Hong-Ou-Mandel interference between independent III-V on silicon waveguide integrated lasers. Opt. Lett., 44, 271-274(2019).

    [6] T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, N. Imoto. Frequency-domain Hong-Ou-Mandel interference. Nat. Photonics, 10, 441-444(2016).

    [7] A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, J. P. Dowling. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett., 85, 2733-2736(2000).

    [8] M. W. Mitchell, J. S. Lundeen, A. M. Steinberg. Super-resolving phase measurements with a multiphoton entangled state. Nature, 429, 161-164(2004).

    [9] A. M. Steinberg, P. G. Kwiat, R. Y. Chiao. Dispersion cancellation in a measurement of the single-photon propagation velocity in glass. Phys. Rev. Lett., 68, 2421-2424(1992).

    [10] J. D. Franson. Nonlocal cancellation of dispersion. Phys. Rev. A, 45, 3126-3132(1992).

    [11] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto. Optical coherence tomography. Science, 254, 1178-1181(1991).

    [12] A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, M. C. Teich. Quantum-optical coherence tomography with dispersion cancellation. Phys. Rev. A, 65, 053817(2002).

    [13] M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, M. C. Teich. Demonstration of dispersion-canceled quantum-optical coherence tomography. Phys. Rev. Lett., 91, 083601(2003).

    [14] M. C. Teich, B. E. A. Saleh, F. N. C. Wong, J. H. Shapiro. Variations on the theme of quantum optical coherence tomography: a review. Quantum Inf. Process., 11, 903-923(2012).

    [15] I. R. Berchera, I. P. Degiovanni. Quantum imaging with sub-Poissonian light: challenges and perspectives in optical metrology. Metrologia, 56, 024001(2019).

    [16] M. A. Taylor, W. P. Bowen. Quantum metrology and its application in biology. Phys. Rep., 615, 1-59(2016).

    [17] M. Mičuda, O. Haderka, M. Ježek. High-efficiency photon-number-resolving multichannel detector. Phys. Rev. A, 78, 025804(2008).

    [18] D. Lopez-Mago, L. Novotny. Quantum-optical coherence tomography with collinear entangled photons. Opt. Lett., 37, 4077-4079(2012).

    [19] D. Lopez-Mago, L. Novotny. Coherence measurements with the two-photon Michelson interferometer. Phys. Rev. A, 86, 023820(2012).

    [20] Z. Ibarra-Borja, C. Sevilla-Gutiérrez, R. Ramírez-Alarcón, H. Cruz-Ramírez, A. B. U’Ren. Experimental demonstration of full-field quantum optical coherence tomography. Photon. Res., 8, 51-56(2020).

    [21] P. Y. Graciano, A. M. A. Martínez, D. Lopez-Mago, G. Castro-Olvera, M. Rosete-Aguilar, J. Garduño-Mejía, R. R. Alarcón, H. C. Ramírez, A. B. U’Ren. Interference effects in quantum-optical coherence tomography using spectrally engineered photon pairs. Sci. Rep., 9, 8954(2019).

    [22] S. Carrasco, J. P. Torres, L. Torner, A. Sergienko, B. E. A. Saleh, M. C. Teich. Enhancing the axial resolution of quantum optical coherence tomography by chirped quasi-phase matching. Opt. Lett., 29, 2429-2431(2004).

    [23] M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, S. Takeuchi. 0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography. Sci. Rep., 5, 18042(2016).

    [24] A. Lyons, G. C. Knee, E. Bolduc, T. Roger, J. Leach, E. M. Gauger, D. Faccio. Attosecond-resolution Hong-Ou-Mandel interferometry. Sci. Adv., 4, eaap9416(2018).

    [25] A. Vallés, G. Jiménez, L. J. Salazar-Serrano, J. P. Torres. Optical sectioning in induced coherence tomography with frequency-entangled photons. Phys. Rev. A, 97, 023824(2018).

    [26] X. Y. Zou, L. J. Wang, L. Mandel. Induced coherence and indistinguishability in optical interference. Phys. Rev. Lett., 67, 318-321(1991).

    [27] M. V. Chekhova, Z. Y. Ou. Nonlinear interferometers in quantum optics. Adv. Opt. Photon., 8, 104-155(2016).

    [28] T.-M. Zhao, H. Zhang, J. Yang, Z.-R. Sang, X. Jiang, X.-H. Bao, J.-W. Pan. Entangling different-color photons via time-resolved measurement and active feed forward. Phys. Rev. Lett., 112, 103602(2014).

    [29] T. Gerrits, F. Marsili, V. B. Verma, L. K. Shalm, M. Shaw, R. P. Mirin, S. W. Nam. Spectral correlation measurements at the Hong-Ou-Mandel interference dip. Phys. Rev. A, 91, 013830(2015).

    [30] R.-B. Jin, T. Gerrits, M. Fujiwara, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, R. Shimizu, M. Takeoka, M. Sasaki. Spectrally resolved Hong-Ou-Mandel interference between independent photon sources. Opt. Express, 23, 28836(2015).

    [31] Z.-Y. J. Ou. Multi-Photon Quantum Interference(2007).

    [32] T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, Y. H. Shih. Can two-photon interference be considered the interference of two photons?. Phys. Rev. Lett., 77, 1917-1920(1996).

    [33] K. A. O’Donnell. Observations of dispersion cancellation of entangled photon pairs. Phys. Rev. Lett., 106, 063601(2011).

    [34] M. Okano, R. Okamoto, A. Tanaka, S. Ishida, N. Nishizawa, S. Takeuchi. Dispersion cancellation in high-resolution two-photon interference. Phys. Rev. A, 88, 043845(2013).

    [35] J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, A. M. Weiner. Demonstration of high-order dispersion cancellation with an ultrahigh-efficiency sum-frequency correlator. Phys. Rev. Lett., 111, 193603(2013).

    [36] K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, P. G. Kwiat. Joint spectral characterization of photon-pair sources. J. Mod. Opt., 65, 1141-1160(2018).

    [37] A. Thomas, M. Van Camp, O. Minaeva, D. Simon, A. V. Sergienko. Spectrally engineered broadband photon source for two-photon quantum interferometry. Opt. Express, 24, 24947-24958(2016).

    [38] S. R. Chinn, E. A. Swanson, J. G. Fujimoto. Optical coherence tomography using a frequency-tunable optical source. Opt. Lett., 22, 340-342(1997).

    [39] U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, J. G. Fujimoto. Spectroscopic optical coherence tomography. Opt. Lett., 25, 111-113(2000).

    [40] I. A. Walmsley. Measuring ultrafast optical pulses using spectral interferometry. Opt. Photon. News, 10, 28-33(1999).

    [41] A. M. Weiner. Ultrafast Optics(2009).

    [42] B. I. Erkmen, J. H. Shapiro. Phase-conjugate optical coherence tomography. Phys. Rev. A, 74, 041601(2006).

    [43] R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, K. J. Resch. Quantum-inspired interferometry with chirped laser pulses. Nat. Phys., 4, 864-868(2008).

    [44] R. Kaltenbaek, J. Lavoie, K. J. Resch. Classical analogues of two-photon quantum interference. Phys. Rev. Lett., 102, 243601(2009).

    Pablo Yepiz-Graciano, Alí Michel Angulo Martínez, Dorilian Lopez-Mago, Hector Cruz-Ramirez, Alfred B. U’Ren. Spectrally resolved Hong–Ou–Mandel interferometry for quantum-optical coherence tomography[J]. Photonics Research, 2020, 8(6): 1023
    Download Citation